Difference between revisions of "Manuals/calci/PASCAL"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div style="font-size:30px">'''PASCAL'''</div><br/>")
 
Line 1: Line 1:
<div style="font-size:30px">'''PASCAL'''</div><br/>
+
<div style="font-size:30px">'''MATRIX("PASCAL",order)'''</div><br/>
 +
*<math>order</math> is the size of the Pascal matrix.
 +
 
 +
==Description==
 +
*This function returns the matrix of any order  with the property of Pascal.
 +
*The Pascal matrix is an infinite matrix containing the binomial coefficients as its elements.
 +
*To obtain a pascal matrix there are three ways:  as either an upper-triangular matrix(U), a lower-triangular matrix(L), or a symmetric matrix(S).
 +
*Example for these matrices are:
 +
<math>L_4 =\begin{pmatrix}
 +
54 & 0 & 0 & 0 \\
 +
20 & 34 & 0 & 0 \\
 +
57 & 89 & -70 & 0 \\
 +
71 & -4 & -52 & 72 \\
 +
\end{pmatrix}</math>
 +
<math>U_4 =\begin{pmatrix}
 +
64 & 22 & -91 & -86 \\
 +
0 & 61 & 62 & -62 \\
 +
0 & 0 & 30 & -81 \\
 +
0 & 0 & 0 & -61 \\
 +
\end{pmatrix}</math>
 +
<math>S_4 =\begin{pmatrix}
 +
41 & 74 & 15 & -47 \\
 +
74 & -16 & 37 & 97 \\
 +
15 & 37 & 24 & -88 \\
 +
-47 & 97 & -88 & -69 \\
 +
\end{pmatrix}</math>
 +
*The amazing  relationship of these matrices are:<math>S_n = L_nU_n</math>.
 +
*And its determinants also 1.i.e.,<math> |S_n|=|L_n|=|U_n|=1 </math>
 +
*The Pascal matrix can actually be constructed by taking the matrix exponential of a special subdiagonal or superdiagonal matrix.
 +
*The elements of the symmetric Pascal matrix are the binomial coefficients, i.e.
 +
<math>S_{ij} = {n \choose r} = \frac{n!}{r!(n-r)!},</math>, where n=i+j, r=i.
 +
*In other words,
 +
<math>S_{ij} = _{i+j}{C}_{i} = \frac{(i+j)!}{(i)!(j)!}</math>.
 +
*Here MATRIX("pascal") is showing the pascal matrix of order 3.
 +
*So users can change the order of the matrix  also.

Revision as of 12:30, 30 April 2015

MATRIX("PASCAL",order)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle order} is the size of the Pascal matrix.

Description

  • This function returns the matrix of any order with the property of Pascal.
  • The Pascal matrix is an infinite matrix containing the binomial coefficients as its elements.
  • To obtain a pascal matrix there are three ways: as either an upper-triangular matrix(U), a lower-triangular matrix(L), or a symmetric matrix(S).
  • Example for these matrices are:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_4 =\begin{pmatrix} 54 & 0 & 0 & 0 \\ 20 & 34 & 0 & 0 \\ 57 & 89 & -70 & 0 \\ 71 & -4 & -52 & 72 \\ \end{pmatrix}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U_4 =\begin{pmatrix} 64 & 22 & -91 & -86 \\ 0 & 61 & 62 & -62 \\ 0 & 0 & 30 & -81 \\ 0 & 0 & 0 & -61 \\ \end{pmatrix}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_4 =\begin{pmatrix} 41 & 74 & 15 & -47 \\ 74 & -16 & 37 & 97 \\ 15 & 37 & 24 & -88 \\ -47 & 97 & -88 & -69 \\ \end{pmatrix}}

  • The amazing relationship of these matrices are:Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n = L_nU_n} .
  • And its determinants also 1.i.e.,Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |S_n|=|L_n|=|U_n|=1 }
  • The Pascal matrix can actually be constructed by taking the matrix exponential of a special subdiagonal or superdiagonal matrix.
  • The elements of the symmetric Pascal matrix are the binomial coefficients, i.e.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{ij} = {n \choose r} = \frac{n!}{r!(n-r)!},} , where n=i+j, r=i.

  • In other words,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{ij} = _{i+j}{C}_{i} = \frac{(i+j)!}{(i)!(j)!}} .

  • Here MATRIX("pascal") is showing the pascal matrix of order 3.
  • So users can change the order of the matrix also.