Difference between revisions of "Manuals/calci/SIGNATURE"
Jump to navigation
Jump to search
| Line 4: | Line 4: | ||
==Description== | ==Description== | ||
*This function returns the matrix of order 3 with the property of signature matrix. | *This function returns the matrix of order 3 with the property of signature matrix. | ||
| − | *A signature matrix is a diagonal elements are <math>\pm</math> | + | *A signature matrix is a diagonal elements are <math>\pm 1</math> |
*So signature matrix is of the form: | *So signature matrix is of the form: | ||
<math>\begin{pmatrix} | <math>\begin{pmatrix} | ||
Revision as of 11:51, 4 May 2015
MATRIX("SIGNATURE",order)
- is the size of the Signature matrix.
Description
- This function returns the matrix of order 3 with the property of signature matrix.
- A signature matrix is a diagonal elements are
- So signature matrix is of the form:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} \pm & 0 & \cdots & 0 & 0 \\ 0 & \pm & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \pm & 0 \\ 0 & 0 & \cdots & 0 & \pm \end{pmatrix}}
- Any such matrix is its own inverse, hence is an involutory matrix.
- It is consequently a square root of the identity matrix.
- Also that not all square roots of the identity are signature matrices.
- The signature matrices are both symmetric and involutory,i.e.,they are orthogonal.
- Consequently, any linear transformation corresponding to a signature matrix constitutes an isometry.