Difference between revisions of "Examples"

From ZCubes Wiki
Jump to navigation Jump to search
 
(96 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
*Basic Engineering examples in z3.<br>
 
*Basic Engineering examples in z3.<br>
 
*z3 codes with z3 notations are shown below.<br>
 
*z3 codes with z3 notations are shown below.<br>
*Reflecting different domains like Engineering, Statistics, Medicine, etc.
 
*Set of cases that are progressively complex on units are used to show the user how it goes from simple to complex cases.<br>
 
*Testing how we can make better solutions to the standard problems compared to other software, due to the presence of units.<br><br>
 
  
==Examples==
+
==Engineering Examples==
 
'''ExampleS1: Chemical Engineering<br>'''
 
'''ExampleS1: Chemical Engineering<br>'''
*An exhaust pipe is 75mm diameter and it is cooled by surrounding it with a water jacket. The exhaust gas enters at 350C and the water enters at 10C. The surface heat transfer coefficients for the gas and water are 300 and 1500 W/m2K respectively. The wall is thin so the temperature drop due to conduction is negligible. The gasses have a mean specific heat capacity Cp of 1130 J/kgK and they must be cooled to 100C. The specific heat capacity of the water is 4190 J/kgK. The flow rate of the gas and water is 200 and 1400 kg/h respectively. Calculate the required length of pipe for parellel flow and contra flow.
+
'''LengthParallelContraFlow'''<br>
 
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3code1a <span style="color:blue;"> z3 code: Normal Calculation without using Function]</span><br>
 
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3code1b <span style="color:blue;"> z3 code: Using Function]</span><br>
'''z3 code: Normal Calculation without using Function'''<br>
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3code1c <span style="color:blue;"> z3 code: Multi-calculation Using Function(variable diameter)]</span><br>
<source lang="cpp">
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3code1d <span style="color:blue;"> z3 code: USING EXAMPLE1 function SOLUTION IN EXAMPLE2 function]</span><br><br>
/*Overall Heat transfer coefficient
 
U = 1/((1/hg)+(1/hw)+(x/k))
 
U = 1</>((1</>hg)+(1</>hw))*/
 
 
 
x = 0  //wall very thin
 
hg = 300(W/m2.degK)
 
hw = 1500(W/m2.degK)
 
cpg = 1130(J/kg.degK)
 
cpw = 4190(J/kg.degK)
 
mg = 200(kg/hr)
 
mw = 1400(kg/hr)
 
D = 75mm
 
tg1 = 350degC<>degK
 
tg2 = 100degC<>degK
 
tw1 = 10degC<>degK
 
 
 
U = 1</>((1</>hg)<+>(1</>hw))
 
delt = tg1<->tg2
 
φ = mg<*>cpg<*>delt
 
tw2 = tw1<+>(φ</>(mw<*>cpw))
 
 
 
 
 
//Parallel flow
 
delti = tg1<->tw1
 
delt0 = tg2<->tw2
 
A = φ<*>(log(delt0</>delti))</>(U<*>(delt0<->delti))
 
L = A</>(π<*>D)
 
//answer:1.48m
 
 
 
 
 
//Contra Flow
 
delti = tg1<->tw2
 
delt0 = tg2<->tw1
 
A = φ<*>(log(delt0</>delti))</>(U<*>(delt0<->delti))
 
L = A</>(π<*>D)
 
//answer:1.44m</source>
 
 
 
 
 
 
 
'''z3 code: Using Function'''<br>
 
<source lang="cpp">
 
function Example1(hg,hw,cpg,cpw,mg,mw)
 
{
 
   
 
/*Overall Heat transfer coefficient
 
U = 1/((1/hg)+(1/hw)+(x/k))
 
U = 1</>((1</>hg)+(1</>hw))*/
 
 
 
x = 0  //wall very thin
 
var D = 75mm
 
var tg1 = 350degC<>degK
 
var tg2 = 100degC<>degK
 
var tw1 = 10degC<>degK
 
 
 
var U = 1</>((1</>hg)<+>(1</>hw))
 
var delt = tg1<->tg2
 
var φ = mg<*>cpg<*>delt
 
var tw2 = tw1<+>(φ</>(mw<*>cpw))
 
 
 
 
 
//Parallel flow
 
var delti = tg1<->tw1
 
var delt0 = tg2<->tw2
 
var A1 = φ<*>(log(delt0</>delti))</>(U<*>(delt0<->delti))
 
var LParallel = A1</>(π<*>D)
 
//answer:1.48m
 
 
 
 
 
//Contra Flow
 
delti = tg1<->tw2
 
delt0 = tg2<->tw1
 
var A2 = φ<*>(log(delt0</>delti))</>(U<*>(delt0<->delti))
 
var LContra = A2</>(π<*>D)
 
//answer:1.44m
 
 
return [LParallel,LContra]
 
           
 
}
 
           
 
           
 
hg = 300(W/m2.degK)
 
hw = 1500(W/m2.degK)
 
cpg = 1130(J/kg.degK)
 
cpw = 4190(J/kg.degK)
 
mg = 200(kg/hr)
 
mw = 1400(kg/hr)
 
 
 
 
 
Example1(hg,hw,cpg,cpw,mg,mw)</source>
 
 
 
 
 
 
 
'''z3 code: USING EXAMPLE1 function SOLUTION IN EXAMPLE2 function'''<br>
 
<source lang="cpp">
 
function Example1(hg,hw)
 
{
 
   
 
/*Overall Heat transfer coefficient
 
U = 1/((1/hg)+(1/hw)+(x/k))
 
U = 1</>((1</>hg)+(1</>hw))*/
 
 
 
x = 0  //wall very thin
 
var U = 1</>((1</>hg)<+>(1</>hw))
 
                       
 
return [U]
 
 
 
}
 
 
hg = 300(W/m2.degK)
 
hw = 1500(W/m2.degK)
 
 
 
Example1(hg,hw)</source>
 
 
 
<source lang="cpp">
 
function Example2(tw1,mg,mw,cpg,cpw)
 
{
 
 
 
var tg1 = 350degC<>degK
 
var tg2 = 100degC<>degK
 
var delt = tg1<->tg2
 
 
 
var φ = mg<*>cpg<*>delt
 
var tw2 = tw1<+>(φ</>(mw<*>cpw))
 
 
 
 
 
//Parallel flow
 
var delti = tg1<->tw1
 
var delt0 = tg2<->tw2
 
var A1 = φ<*>(log(delt0</>delti))</>(Example1(hg,hw)<*>(delt0<->delti))
 
var LParallel = A1</>(π<*>D)
 
//answer:1.48m
 
 
 
 
 
//Contra Flow
 
delti = tg1<->tw2
 
delt0 = tg2<->tw1
 
var A2 = φ<*>(log(delt0</>delti))</>(Example1(hg,hw)<*>(delt0<->delti))
 
var LContra = A2</>(π<*>D)
 
//answer:1.44m
 
 
 
 
return [LParallel,LContra]
 
                 
 
}
 
                 
 
 
 
cpg = 1130(J/kg.degK)
 
cpw = 4190(J/kg.degK)
 
mg = 200(kg/hr)
 
mw = 1400(kg/hr)
 
tw1 = 10degC<>degK               
 
                 
 
                 
 
Example2(tw1,mg,mw,cpg,cpw)</source>
 
 
 
 
 
 
 
  
 
'''ExampleS2: Civil Engineering<br>'''
 
'''ExampleS2: Civil Engineering<br>'''
A steel pipe 5 ft (1.5 m) in diameter and 3/5 in. (9.53 mm) thick sustains a fluid pressure of
+
'''HoopStress'''<br>
180 lb/sq.in. (1241.1 kPa). Determine the hoop stress, the longitudinal stress, and the increase
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3code2a <span style="color:blue;"> z3 code: Using Function]</span><br>
in diameter of this pipe. Use 0.25 for Poisson’s ratio.
 
 
 
 
 
'''z3 code: Using Function'''<br>
 
<source lang="cpp">
 
function civil1(p,D,t){
 
   
 
var E = 30e+6(lb/sqin)//for steel
 
var v = 0.25
 
 
 
/*hoop stress
 
s = pD/2t
 
longitudinal stress
 
s'= pD/4t
 
increase in cyl diameter
 
delD = D(s-vs')/E */
 
 
 
var s = p<*>D</>(2<*>t)
 
var sdash = p<*>D</>(4<*>t)
 
var delD = D<*>(s<->v<*>sdash)</>E
 
 
 
return [s,sdash,delD<>inch]
 
 
 
}
 
 
 
p = 180(lb/sqin)
 
D = 5(ft)
 
t = (3/8)<>(inch)
 
 
 
civil1(p,D,t)</source>
 
 
 
 
 
  
  
 
'''ExampleS3: Civil Engineering<br>'''
 
'''ExampleS3: Civil Engineering<br>'''
A 1/2-in. (12.7-mm) diameter Copperweld bar consists of a steel core 3/8 in. (9.53 mm) indiameter and a copper skin 1/16 in. (1.6 mm) thick. What is the elongation of a 1-ft (0.3-m) length of this bar, and what is the internal force between the steel and copper arising from a temperature rise of 80°F (44.4°C)? Use the following values for thermal expansion coefficients: cs = 6.5*106 and cc = 9.0*106 , where the subscripts s and c refer to steel and copper, respectively. Also, Ec = 15*106 lb/sq.in. (1.03*108 kPa).
+
'''InternalForce'''<br>
 
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3code3a <span style="color:blue;"> z3 code: Normal Calculation without using Function]</span><br>
'''z3 code: Normal Calculation without using Function'''<br>
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3code3b <span style="color:blue;"> z3 code: Using Function]</span><br>
<source lang="cpp">
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3code3c <span style="color:blue;"> z3 code: USING EXAMPLE1 function SOLUTION IN EXAMPLE2 function]</span><br>
dc = 12.7(mm)
 
ds = (3/8)<>(inch)
 
dcs = (1/16)<>(inch)
 
Es = 30e+6(lbf/in2)
 
Ec = 1.03e+11(Pa)
 
cs = 6.5e-6(diffF-1)
 
cc = 9e-6(diffF-1)
 
L = 1(ft)
 
delT = 44.4(diffC)
 
 
 
 
 
//cross-sectional area
 
A = π<*>(dc)^2</>4
 
As = π<*>(ds)^2</>4
 
Ac = A<->As
 
   
 
 
 
//coeff of expansion
 
//c = ((As<*>Es<*>cs)<+>(Ac<*>Ec<*>cc))</>(As<*>Es<+>Ac<*>Ec)
 
a = (As<*>Es<*>cs)
 
b = (Ac<*>Ec<*>cc)<>(lbf.diffF-1)
 
d = (As<*>Es<+>Ac<*>Ec)
 
c = (a<+>b)</>d
 
 
 
 
 
//thermal expansion
 
delL = c<*>L<*>delT
 
 
 
//expansion w.o restraint
 
delLc = cc<*>L<*>delT
 
delLcs = delLc<->delL
 
delLs= cs<*>L<*>delT
 
delLsc = delL<->delLs
 
 
 
//restraining force
 
P1 = Ac<*>Ec<*>delLcs</>L
 
P2 = As<*>Es<*>delLsc</>L</source>
 
 
 
 
 
 
 
'''z3 code: Using Function'''<br>
 
<source lang="cpp">
 
function civil2(dc,ds,dcs,L){
 
 
var Es = 30e+6(lbf/in2)
 
var Ec = 1.03e+11(Pa)
 
var cs = 6.5e-6(diffF-1)
 
var cc = 9e-6(diffF-1)
 
var delT = 44.4(diffC)
 
 
 
 
 
//cross-sectional area
 
var A = π<*>(dc)^2</>4
 
var As = π<*>(ds)^2</>4
 
var Ac = A<->As
 
   
 
 
 
//coeff of expansion
 
//c = ((As<*>Es<*>cs)<+>(Ac<*>Ec<*>cc))</>(As<*>Es<+>Ac<*>Ec)
 
var a = (As<*>Es<*>cs)
 
var b = (Ac<*>Ec<*>cc)<>(lbf.diffF-1)
 
var d = (As<*>Es<+>Ac<*>Ec)
 
var c = (a<+>b)</>d
 
 
 
 
 
//thermal expansion
 
var delL = c<*>L<*>delT
 
 
 
//expansion w.o restraint
 
var delLc = cc<*>L<*>delT
 
var delLcs = delLc<->delL
 
var delLs= cs<*>L<*>delT
 
var delLsc = delL<->delLs
 
 
 
//restraining force
 
var P1 = Ac<*>Ec<*>delLcs</>L
 
var P2 = As<*>Es<*>delLsc</>L
 
 
 
 
 
return[P1,P2]
 
 
 
}
 
 
 
dc = 12.7(mm)
 
ds = (3/8)<>(inch)
 
dcs = (1/16)<>(inch)
 
L = 1(ft)
 
 
 
 
 
civil2(dc,ds,dcs,L)</source>
 
 
 
 
 
 
 
 
 
'''z3 code: USING EXAMPLE1 function SOLUTION IN EXAMPLE2 function'''<br>
 
<source lang="cpp">
 
function civil2(dc,ds,dcs){
 
 
 
var Es = 30e+6(lbf/in2)
 
var Ec = 1.03e+11(Pa)
 
var cs = 6.5e-6(diffF-1)
 
var cc = 9e-6(diffF-1)
 
 
 
//cross-sectional area
 
var A = π<*>(dc)^2</>4
 
var As = π<*>(ds)^2</>4
 
var Ac = A<->As
 
 
 
//coeff of expansion
 
//c = ((As<*>Es<*>cs)<+>(Ac<*>Ec<*>cc))</>(As<*>Es<+>Ac<*>Ec)
 
var a = (As<*>Es<*>cs)
 
var b = (Ac<*>Ec<*>cc)<>(lbf.diffF-1)
 
var d = (As<*>Es<+>Ac<*>Ec)
 
var c = (a<+>b)</>d
 
   
 
return[As,Ac,c]
 
 
 
}
 
 
 
 
 
dc = 12.7(mm)
 
ds = (3/8)<>(inch)
 
dcs = (1/16)<>(inch)
 
 
 
civil2(dc,ds,dcs)</source>
 
 
 
<source lang="cpp">
 
function civil3(L,delT){
 
 
 
var Es = 30e+6(lbf/in2)
 
var Ec = 1.03e+11(Pa)
 
var cs = 6.5e-6(diffF-1)
 
var cc = 9e-6(diffF-1)
 
 
 
//thermal expansion
 
var delL = civil2(dc,ds,dcs)[2]<*>L<*>delT
 
 
 
//expansion w.o restraint
 
var delLc = cc<*>L<*>delT
 
var delLcs = delLc<->delL
 
var delLs= cs<*>L<*>delT
 
var delLsc = delL<->delLs
 
 
 
//restraining force
 
var P1 = civil2(dc,ds,dcs)[1]<*>Ec<*>delLcs</>L
 
var P2 = civil2(dc,ds,dcs)[0]<*>Es<*>delLsc</>L
 
 
 
return [P1,P2]
 
 
 
}
 
 
 
 
 
L = 1(ft)
 
delT = 44.4(diffC)
 
 
 
 
 
civil3(L,delT)</source>
 
 
 
 
 
  
  
 
'''ExampleS4: Civil Engineering<br>'''
 
'''ExampleS4: Civil Engineering<br>'''
M1 is a 4x4, F = 5500 lb (24,464 N), and Phi = 30°. The allowable compressive
+
'''NotchDesign'''<br>
stresses are P = 1200 lb/sq.in. (8274 kPa) and Q = 390 lb/sq.in. (2689.1 kPa). The
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3code4a <span style="color:blue;"> z3 code: Using Function]</span><br>
projection of M1 into M2 is restricted to a vertical distance of 2.5 in. (63.5 mm).
 
  
'''z3 code: Using Function'''<br>
 
<source lang="cpp">
 
function civil4(){
 
  
var b = 3.625(inch)   
+
'''ExampleS5: Engineering Economics<br>'''
var φ = 30(deg)
+
'''RateOfEarnings'''<br>
var P = 1200(lbf/sqin)
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3code5a <span style="color:blue;"> z3 code: Using Function]</span><br>
var Q = 2689.1e+3(Pa)
 
var F = 24464(N)
 
var A = 13.1(sqin)
 
  
//lengths
 
var AB = b</>DSIN(φ)
 
var AC = (b<*>DSIN(φ/2))</>DSIN(φ)
 
var BC = (b<*>DCOS(φ/2))</>DSIN(φ)
 
  
//stresses f1 and f2
+
'''ExampleS6: Fluid Mechanics<br>'''
var f1 = (F<*>DSIN(φ))</>(A<*>DTAN(φ/2))
+
'''BernoullisPressure'''<br>
var f2 = (F<*>DSIN(φ)<*>DTAN(φ/2))</>(A)
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3code6a <span style="color:blue;"> z3 code: Using Function]</span><br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3code6b <span style="color:blue;"> z3 code: Multi-calculation Using Function(variable diameter)]</span><br>
  
//allowable stresses
 
var N1 = P<*>Q</>((P<*>(DSIN(φ/2))^2)<+>Q<*>(DCOS(φ/2))^2)
 
var N2 = P<*>Q</>((P<*>(DCOS(φ/2))^2)<+>Q<*>(DSIN(φ/2))^2)
 
   
 
  
return[AC;BC;f1<>(lbf/sqin);f2<>(lbf/sqin);N1<>Pa;N2<>Pa]
+
==Examples of Java and z3 Programs==
 +
'''ExampleR1: Check if number is Odd/Even'''<br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes1a <span style="color:blue;"> Java code]</span><br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes1b <span style="color:blue;"> z3 code]</span>
  
}
+
'''ExampleR2: Sum of a given Array'''<br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes2a <span style="color:blue;"> Java code]</span><br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes2b <span style="color:blue;"> z3 code]</span>
  
 +
'''ExampleR3: Linear Search'''<br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes3a <span style="color:blue;"> Java code]</span><br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes3b <span style="color:blue;"> z3 code]</span><br>
  
civil4() </source>
+
'''ExampleR4: Floyd's Triangle'''<br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes4a <span style="color:blue;"> Java code]</span><br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes4b <span style="color:blue;"> z3 code]</span><br>
  
 +
'''ExampleR5: Reverse Number'''<br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes5a <span style="color:blue;"> Java code]</span><br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes5b <span style="color:blue;"> z3 code]</span><br>
  
 +
'''ExampleR6: Calculate the Factorial of a number'''<br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes6a <span style="color:blue;"> Java code]</span><br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes6b <span style="color:blue;"> z3 code]</span><br>
  
 +
'''ExampleR7: Area of Rectangle'''<br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes7a <span style="color:blue;"> Java code]</span><br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes7b <span style="color:blue;"> z3 code]</span><br>
  
 +
'''ExampleR8: Display Prime Numbers'''<br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes8a <span style="color:blue;"> Java code]</span><br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes8b <span style="color:blue;"> z3 code]</span><br>
  
'''ExampleS5: Engineering Economics<br>'''
+
'''ExampleR9: Ascending Order'''<br>
The QRS Corp. purchased capital equipment for use in a 5-year venture. The equipment
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes9a <span style="color:blue;"> Java code]</span><br>
cost $240,000 and had zero salvage value. If the income tax rate was 52 percent and the
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes9b <span style="color:blue;"> z3 code]</span><br>
annual income from the investment was $83,000 before taxes and depreciation, what was
 
the average rate of earnings if the profits after taxes were invested in tax-free bonds yielding 3 percent? Compare the results obtained when depreciation is computed by the straight-line method.
 
  
'''z3 code: Using Function'''<br>
+
'''ExampleR10: Inputting Matrix and Calculating it's Inverse'''<br>
<source lang="cpp">
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes10a <span style="color:blue;"> Java code]</span><br>
function economics(){
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes10b <span style="color:blue;"> z3 code]</span><br>
var EC = 240000
 
var n = 5
 
var GI = 83000
 
var r = 0.52
 
var i = 0.03
 
  
//taxable income
+
'''ExampleR11: Inputting 2 Matrices and Calculating Sum,Difference and Product'''<br>
var DC = EC</>n
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes11a <span style="color:blue;"> Java code]</span><br>
var TI = GI<->DC
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples#z3codes11b <span style="color:blue;"> z3 code]</span><br><br>
  
//annual tax payment
+
==Unit Conversion Examples==
var TP = r<*>TI
+
'''ExampleP1: FrictionFactor'''<br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3codep1 <span style="color:blue;"> z3 code: Solution with SI units<br> Solution with SI and Imperial units<br> Solution with imperial units<br>]</span><br>
  
//net income
+
'''ExampleP2: ReynoldsNumber'''<br>
var NI = GI<->TP
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3codep2 <span style="color:blue;"> z3 code: Solution with SI units<br> Solution with SI and Imperial units<br> Solution with imperial units<br>]</span><br>
//S = R(USCA)
 
//SPCA = (1<+>i)^n
 
var s = NI<*>(5.309)
 
var sp = s</>EC
 
var i = [(sp^0.2)<->1]<*>100
 
  
return i
+
'''ExampleP3: FouriersLaw'''<br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3codep3 <span style="color:blue;"> z3 code: Solution with SI units<br> Solution with SI and Imperial units<br> Solution with imperial units<br>]</span><br>
  
}
+
'''ExampleP4: MaximumHeight'''<br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3codep4 <span style="color:blue;"> z3 code: Solution with SI units<br> Solution with SI and Imperial units<br> Solution with imperial units<br>]</span><br>
  
 +
'''ExampleP5: DopplerEffect'''<br>
 +
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3codep5 <span style="color:blue;"> z3 code: Solution with SI units<br> Solution with SI and Imperial units<br> Solution with imperial units<br>]</span><br>
  
economics()</source>
+
'''ExampleP6: CircularSegmentArea'''<br>
 
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3codep6 <span style="color:blue;"> z3 code: Solution with SI units<br> Solution with SI and Imperial units<br> Solution with imperial units<br>]</span><br>
 
 
 
 
 
 
'''ExampleS6: Fluid Mechanics<br>'''
 
A steel pipe is discharging 10 ft3/s (283.1 L/s) of water. At section 1, the pipe diameter is 12 in. (304.8 mm), the pressure is 18 lb/sq.in. (124.11 kPa), and the elevation is 140 ft(42.67 m). At section 2, farther downstream, the pipe diameter is 8 in. (203.2 mm), and the elevation is 106 ft (32.31 m). If there is a head loss of 9 ft (2.74 m) between these sections due to pipe friction, what is the pressure at section 2?
 
 
 
'''z3 code: Using Function'''<br>
 
<source lang="cpp">
 
function fluidmechanics(){
 
   
 
var d1 = 12(inch)
 
var d2 = 203.2(mm)
 
var p1 = 124.11e+3(Pa)
 
var z1 = 140(ft)
 
var z2 = 32.31(m)
 
var q1 = 283.1(L/s)
 
var q2 = 10(ft3/s)
 
var hf = 9(ft)
 
var w = (62.4/(144*12))<>(lbf/inch3)
 
var g = 32.2(ft/s2)
 
 
var a1 = π<*>(d1)^2</>
 
var a2 = π<*>(d2)^2</>4   
 
var v1 = q1</>a1
 
var v2 = q2</>a2
 
  
var p2 = (((v1^2<->v2^2)</>(2<*>g)<+>z1<->z2<->hf)<*>w)<+>p1
+
'''ExampleP7: CoulombsLaw'''<br>
   
+
<span class="plainlinks">[http://wiki.zcubes.com/Manuals/calci/Examples1#z3codep7 <span style="color:blue;"> z3 code: Solution with SI units<br> Solution with SI and Imperial units<br> Solution with imperial units<br>]</span><br><br>
   
 
return p2<>(lbf/in2)
 
   
 
   
 
}
 
           
 
fluidmechanics()</source>
 

Latest revision as of 02:44, 15 February 2018

Engineering Examples in z3


DESCRIPTION

  • Basic Engineering examples in z3.
  • z3 codes with z3 notations are shown below.

Engineering Examples

ExampleS1: Chemical Engineering
LengthParallelContraFlow
z3 code: Normal Calculation without using Function
z3 code: Using Function
z3 code: Multi-calculation Using Function(variable diameter)
z3 code: USING EXAMPLE1 function SOLUTION IN EXAMPLE2 function

ExampleS2: Civil Engineering
HoopStress
z3 code: Using Function


ExampleS3: Civil Engineering
InternalForce
z3 code: Normal Calculation without using Function
z3 code: Using Function
z3 code: USING EXAMPLE1 function SOLUTION IN EXAMPLE2 function


ExampleS4: Civil Engineering
NotchDesign
z3 code: Using Function


ExampleS5: Engineering Economics
RateOfEarnings
z3 code: Using Function


ExampleS6: Fluid Mechanics
BernoullisPressure
z3 code: Using Function
z3 code: Multi-calculation Using Function(variable diameter)


Examples of Java and z3 Programs

ExampleR1: Check if number is Odd/Even
Java code
z3 code

ExampleR2: Sum of a given Array
Java code
z3 code

ExampleR3: Linear Search
Java code
z3 code

ExampleR4: Floyd's Triangle
Java code
z3 code

ExampleR5: Reverse Number
Java code
z3 code

ExampleR6: Calculate the Factorial of a number
Java code
z3 code

ExampleR7: Area of Rectangle
Java code
z3 code

ExampleR8: Display Prime Numbers
Java code
z3 code

ExampleR9: Ascending Order
Java code
z3 code

ExampleR10: Inputting Matrix and Calculating it's Inverse
Java code
z3 code

ExampleR11: Inputting 2 Matrices and Calculating Sum,Difference and Product
Java code
z3 code

Unit Conversion Examples

ExampleP1: FrictionFactor
z3 code: Solution with SI units
Solution with SI and Imperial units
Solution with imperial units

ExampleP2: ReynoldsNumber
z3 code: Solution with SI units
Solution with SI and Imperial units
Solution with imperial units

ExampleP3: FouriersLaw
z3 code: Solution with SI units
Solution with SI and Imperial units
Solution with imperial units

ExampleP4: MaximumHeight
z3 code: Solution with SI units
Solution with SI and Imperial units
Solution with imperial units

ExampleP5: DopplerEffect
z3 code: Solution with SI units
Solution with SI and Imperial units
Solution with imperial units

ExampleP6: CircularSegmentArea
z3 code: Solution with SI units
Solution with SI and Imperial units
Solution with imperial units

ExampleP7: CoulombsLaw
z3 code: Solution with SI units
Solution with SI and Imperial units
Solution with imperial units