Difference between revisions of "Manuals/calci/IMLOG2"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...")
 
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
<div style="font-size:30px">'''IMLOG2(Complexnumber)'''</div><br/>
 +
*<math>Complexnumber</math>  is of the form <math>z=x+iy</math>  
  
Syntax
+
==Description==
 +
*This function gives the binary logarithm of a complex number.
 +
*<math>IMLOG2(Complexnumber)</math>, where Complexnumber is  in the form of <math>z=x+iy</math>. i.e. <math>x</math> & <math>y</math> are the real numbers.
 +
*And <math>I</math> is the imaginary unit .<math>i=\sqrt{-1}</math>.
 +
*Binary logarithm is the inverse function of the Power of two functions.
 +
*Log base 2 is called Binary logarithm.
 +
*To find the Binary logarithm of a complex number we have to calculate from the natural logarithm.
 +
*So <math>log2(x+iy)=(log_2 e)ln(x+iy)</math>.
 +
*We can use COMPLEX function to convert real and imaginary number in to a complex number.
  
</div></div>
+
==ZOS==
----
+
*The syntax is to calculate Binary logarithm of a complex number is <math>IMLOG2(Complexnumber)</math>.
<div id="4SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
**<math>Complexnumber</math> is of the form <math>z=x+iy</math>.
 +
*For e.g imlog2("2.1-3.5i")
 +
{{#ev:youtube|Kd3hYo0wy4s|280|center|ImLog2}}
  
Remarks
+
==Examples==
  
</div></div>
+
#=IMLOG2("2+3i") = 1.85021985921295+1.41787163085485i
----
+
#=IMLOG2("5-6i") = 2.96536866900967-1.26388460522614i
<div id="2SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
#=IMLOG2("15") = 3.90689059590921
 +
#=IMLOG2("11i") = 3.45943161890355+2.26618007108801i
 +
#=IMLOG2("0") = NULL
  
Examples
+
==Related Videos==
  
</div></div>
+
{{#ev:youtube|m-d_Xks90AM|280|center|Log of Complex Number}}
----
 
<div id="8SpaceContent" align="left"><div class="ZEditBox" align="justify">'''<font face="Times New Roman">''''''''''''<font size="6"> </font>''' '''''''''</font>'''</div></div>
 
----
 
<div id="11SpaceContent" align="left"><div class="ZEditBox mceEditable" align="justify">
 
  
<font size="5">Description</font>
+
==See Also==
 +
*[[Manuals/calci/IMLOG10  | IMLOG10 ]]
 +
*[[Manuals/calci/LOG10  | LOG10 ]]
 +
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
  
</div></div>
+
==References==
----
+
[http://en.wikipedia.org/wiki/Binary_logarithm Binary Logarithm]
<div id="5SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">This function calculates the base-2 logarithm of a complex number in a + bi or a + bj text format.</font></font></font>
 
 
 
</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"><font size="6">'''<font face="Arial">IMLOG2</font>'''</font></div></div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">The base-2 logarithm of a complex number can be calculated from the natural logarithm as follows: </font></font></font>
 
 
 
<font color="#484848" face="Arial">log<sub>2</sub> (x+yi) = (log<sub>2</sub>e)1n (x+yi)</font>
 
 
 
<font color="#484848"></font>
 
 
 
</div></div>
 
----
 
<div id="6SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IMLOG2'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IN'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where IN</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">   is a complex number .</font></font></font>
 
 
 
</div></div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 2.428990497563786+0.5489546632866346i
 
| class="                                                              sshl_f  " |
 
|
 
|
 
|- class="even"
 
| class=" " | Row2
 
| class="f52543                                                                                                                              " |
 
| class="SelectTD" |
 
|
 
|
 
|- class="odd"
 
| Row3
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
|
 
|
 
|
 
|
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Let's see an example.</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">I.e.=IMLOG2(“5+2i”) is 2.42899+0.54895i</font></font></font>
 
 
 
<br />
 
 
 
</div>
 
----
 

Latest revision as of 03:59, 16 March 2020

IMLOG2(Complexnumber)


  • is of the form

Description

  • This function gives the binary logarithm of a complex number.
  • , where Complexnumber is in the form of . i.e. & are the real numbers.
  • And is the imaginary unit ..
  • Binary logarithm is the inverse function of the Power of two functions.
  • Log base 2 is called Binary logarithm.
  • To find the Binary logarithm of a complex number we have to calculate from the natural logarithm.
  • So .
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

ZOS

  • The syntax is to calculate Binary logarithm of a complex number is .
    • is of the form .
  • For e.g imlog2("2.1-3.5i")
ImLog2

Examples

  1. =IMLOG2("2+3i") = 1.85021985921295+1.41787163085485i
  2. =IMLOG2("5-6i") = 2.96536866900967-1.26388460522614i
  3. =IMLOG2("15") = 3.90689059590921
  4. =IMLOG2("11i") = 3.45943161890355+2.26618007108801i
  5. =IMLOG2("0") = NULL

Related Videos

Log of Complex Number

See Also

References

Binary Logarithm