Difference between revisions of "Manuals/calci/IMLOG2"
Jump to navigation
Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...") |
|||
(15 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''IMLOG2(Complexnumber)'''</div><br/> |
+ | *<math>Complexnumber</math> is of the form <math>z=x+iy</math> | ||
− | + | ==Description== | |
+ | *This function gives the binary logarithm of a complex number. | ||
+ | *<math>IMLOG2(Complexnumber)</math>, where Complexnumber is in the form of <math>z=x+iy</math>. i.e. <math>x</math> & <math>y</math> are the real numbers. | ||
+ | *And <math>I</math> is the imaginary unit .<math>i=\sqrt{-1}</math>. | ||
+ | *Binary logarithm is the inverse function of the Power of two functions. | ||
+ | *Log base 2 is called Binary logarithm. | ||
+ | *To find the Binary logarithm of a complex number we have to calculate from the natural logarithm. | ||
+ | *So <math>log2(x+iy)=(log_2 e)ln(x+iy)</math>. | ||
+ | *We can use COMPLEX function to convert real and imaginary number in to a complex number. | ||
− | < | + | ==ZOS== |
− | + | *The syntax is to calculate Binary logarithm of a complex number is <math>IMLOG2(Complexnumber)</math>. | |
− | < | + | **<math>Complexnumber</math> is of the form <math>z=x+iy</math>. |
+ | *For e.g imlog2("2.1-3.5i") | ||
+ | {{#ev:youtube|Kd3hYo0wy4s|280|center|ImLog2}} | ||
− | + | ==Examples== | |
− | + | #=IMLOG2("2+3i") = 1.85021985921295+1.41787163085485i | |
− | -- | + | #=IMLOG2("5-6i") = 2.96536866900967-1.26388460522614i |
− | + | #=IMLOG2("15") = 3.90689059590921 | |
+ | #=IMLOG2("11i") = 3.45943161890355+2.26618007108801i | ||
+ | #=IMLOG2("0") = NULL | ||
− | + | ==Related Videos== | |
− | + | {{#ev:youtube|m-d_Xks90AM|280|center|Log of Complex Number}} | |
− | - | ||
− | |||
− | |||
− | |||
− | + | ==See Also== | |
+ | *[[Manuals/calci/IMLOG10 | IMLOG10 ]] | ||
+ | *[[Manuals/calci/LOG10 | LOG10 ]] | ||
+ | *[[Manuals/calci/COMPLEX | COMPLEX ]] | ||
− | + | ==References== | |
− | + | [http://en.wikipedia.org/wiki/Binary_logarithm Binary Logarithm] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 03:59, 16 March 2020
IMLOG2(Complexnumber)
- is of the form
Description
- This function gives the binary logarithm of a complex number.
- , where Complexnumber is in the form of . i.e. & are the real numbers.
- And is the imaginary unit ..
- Binary logarithm is the inverse function of the Power of two functions.
- Log base 2 is called Binary logarithm.
- To find the Binary logarithm of a complex number we have to calculate from the natural logarithm.
- So .
- We can use COMPLEX function to convert real and imaginary number in to a complex number.
ZOS
- The syntax is to calculate Binary logarithm of a complex number is .
- is of the form .
- For e.g imlog2("2.1-3.5i")
Examples
- =IMLOG2("2+3i") = 1.85021985921295+1.41787163085485i
- =IMLOG2("5-6i") = 2.96536866900967-1.26388460522614i
- =IMLOG2("15") = 3.90689059590921
- =IMLOG2("11i") = 3.45943161890355+2.26618007108801i
- =IMLOG2("0") = NULL