Difference between revisions of "Manuals/calci/IMLOG2"

From ZCubes Wiki
Jump to navigation Jump to search
 
(14 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''IMLOG2(z)'''</div><br/>
+
<div style="font-size:30px">'''IMLOG2(Complexnumber)'''</div><br/>
*<math>z</math> is the complex number is of the form <math>x+iy</math>  
+
*<math>Complexnumber</math> is of the form <math>z=x+iy</math>  
  
 
==Description==
 
==Description==
 
*This function gives the binary logarithm of a complex number.
 
*This function gives the binary logarithm of a complex number.
*IMLOG2(z),Where z is the complex number in the form of "x+iy".i.e. x&y are the real numbers.
+
*<math>IMLOG2(Complexnumber)</math>, where Complexnumber is in the form of <math>z=x+iy</math>. i.e. <math>x</math> & <math>y</math> are the real numbers.
*'I' imaginary unit .i=sqrt(-1).  
+
*And <math>I</math> is the imaginary unit .<math>i=\sqrt{-1}</math>.  
*Binary logarithm is the inverse function of n ↦ 2n.
+
*Binary logarithm is the inverse function of the Power of two functions.
 
*Log base 2 is called Binary logarithm.  
 
*Log base 2 is called Binary logarithm.  
 
*To find the Binary logarithm of a complex number we have to calculate from the natural logarithm.
 
*To find the Binary logarithm of a complex number we have to calculate from the natural logarithm.
*So log2(x+iy)=(log2 e)ln(x+iy).We can use COMPLEX function to convert real and imaginary number in to a complex number.  
+
*So <math>log2(x+iy)=(log_2 e)ln(x+iy)</math>.
 +
*We can use COMPLEX function to convert real and imaginary number in to a complex number.
 +
 
 +
==ZOS==
 +
*The syntax is to calculate Binary logarithm of a complex number is <math>IMLOG2(Complexnumber)</math>.
 +
**<math>Complexnumber</math>  is of the form <math>z=x+iy</math>.
 +
*For e.g imlog2("2.1-3.5i")
 +
{{#ev:youtube|Kd3hYo0wy4s|280|center|ImLog2}}
  
 
==Examples==
 
==Examples==
  
#IMLOG2("2+3i")=1.85021985921295+1.41787163085485i
+
#=IMLOG2("2+3i") = 1.85021985921295+1.41787163085485i
#IMLOG2("5-6i")=2.96536866900967-1.26388460522614i
+
#=IMLOG2("5-6i") = 2.96536866900967-1.26388460522614i
#IMLOG2("15")=3.90689059590921
+
#=IMLOG2("15") = 3.90689059590921
#IMLOG2("11i")=3.45943161890355+2.26618007108801i
+
#=IMLOG2("11i") = 3.45943161890355+2.26618007108801i
#IMLOG2("0")=NULL
+
#=IMLOG2("0") = NULL
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|m-d_Xks90AM|280|center|Log of Complex Number}}
  
 
==See Also==
 
==See Also==
 
*[[Manuals/calci/IMLOG10  | IMLOG10 ]]
 
*[[Manuals/calci/IMLOG10  | IMLOG10 ]]
*[[Manuals/calci/LOG2 | LOG2 ]]
+
*[[Manuals/calci/LOG10 | LOG10 ]]
 
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
 
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
 
  
 
==References==
 
==References==
[http://en.wikipedia.org/wiki/Bessel_function Bessel Function]
+
[http://en.wikipedia.org/wiki/Binary_logarithm Binary Logarithm]

Latest revision as of 02:59, 16 March 2020

IMLOG2(Complexnumber)


  • is of the form

Description

  • This function gives the binary logarithm of a complex number.
  • , where Complexnumber is in the form of . i.e. & are the real numbers.
  • And is the imaginary unit ..
  • Binary logarithm is the inverse function of the Power of two functions.
  • Log base 2 is called Binary logarithm.
  • To find the Binary logarithm of a complex number we have to calculate from the natural logarithm.
  • So .
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

ZOS

  • The syntax is to calculate Binary logarithm of a complex number is .
    • is of the form .
  • For e.g imlog2("2.1-3.5i")
ImLog2

Examples

  1. =IMLOG2("2+3i") = 1.85021985921295+1.41787163085485i
  2. =IMLOG2("5-6i") = 2.96536866900967-1.26388460522614i
  3. =IMLOG2("15") = 3.90689059590921
  4. =IMLOG2("11i") = 3.45943161890355+2.26618007108801i
  5. =IMLOG2("0") = NULL

Related Videos

Log of Complex Number

See Also

References

Binary Logarithm