Difference between revisions of "Manuals/calci/IDEMPOTENT"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div style="font-size:30px">'''IDEMPOTENT'''</div><br/>")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="font-size:30px">'''IDEMPOTENT'''</div><br/>
+
<div style="font-size:30px">'''MATRIX("IDEMPOTENT",order)'''</div><br/>
 +
*<math>order</math> is the size of the Idempotent matrix.
 +
 
 +
==Description==
 +
*This function is showing the idempotent matrix of order 3.
 +
*An idempotent matrix is a matrix which, when multiplied by itself, is getting the same matrix.
 +
*i.e.,A square matrix K is said to be idempotent if <math>K^2=K</math>.
 +
*The properties of idempotent matrix is:
 +
# <math>K^r=K</math> for r being a positive integer.
 +
# <math>I-K</math> is idempotent.
 +
# If <math>K_1</math>  and <math>K_2</math>  are idempotent matrices and <math>K_1K_2 =K_2K_1</math>. Then <math>K_1K_2</math> is idempotent.
 +
 
 +
==Examples==
 +
*1.MATRIXTYPE("idempotent",IM(19)) = true
 +
*2.MATRIXTYPE([12,14],"idempotent") = false
 +
*3.MATRIXTYPE(IM(5)|*|2,"idempotent") = false
 +
 
 +
==See Also==
 +
*[[Manuals/calci/IDENTITY| IDENTITY]]
 +
*[[Manuals/calci/SYMMETRIC| SYMMETRIC]]
 +
*[[Manuals/calci/PASCAL| PASCAL]]
 +
*[[Manuals/calci/TRIANGULAR| TRIANGULAR]]
 +
 
 +
==References==
 +
*[http://en.wikipedia.org/wiki/Idempotent_matrix Idempotent matrix]

Latest revision as of 08:36, 15 May 2015

MATRIX("IDEMPOTENT",order)


  • is the size of the Idempotent matrix.

Description

  • This function is showing the idempotent matrix of order 3.
  • An idempotent matrix is a matrix which, when multiplied by itself, is getting the same matrix.
  • i.e.,A square matrix K is said to be idempotent if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K^2=K} .
  • The properties of idempotent matrix is:
  1. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K^r=K} for r being a positive integer.
  2. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I-K} is idempotent.
  3. If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K_1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K_2} are idempotent matrices and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K_1K_2 =K_2K_1} . Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K_1K_2} is idempotent.

Examples

  • 1.MATRIXTYPE("idempotent",IM(19)) = true
  • 2.MATRIXTYPE([12,14],"idempotent") = false
  • 3.MATRIXTYPE(IM(5)|*|2,"idempotent") = false

See Also

References