Difference between revisions of "Manuals/calci/SINH"

From ZCubes Wiki
Jump to navigation Jump to search
Line 6: Line 6:
 
*It's also called as Circular function.
 
*It's also called as Circular function.
 
*Here <math>SINH(z)=\frac{e^z-e^{-z}}{2}</math> or <math>-iSIN(iz)</math>, where <math>i</math> is the imaginary unit and <math>i=\sqrt{-1}</math>
 
*Here <math>SINH(z)=\frac{e^z-e^{-z}}{2}</math> or <math>-iSIN(iz)</math>, where <math>i</math> is the imaginary unit and <math>i=\sqrt{-1}</math>
*The relation between Hyperbolic & Trigonometric function is <math>Sin(iz)=iSin(hz)</math> & <math>Sinh(iz)= iSin(z)</math>
+
*The relation between Hyperbolic & Trigonometric function is <math>Sin(iz)=iSinh(z)</math> & <math>Sinh(iz)= iSin(z)</math>
 
*SINH(-z) = -SINH(z)
 
*SINH(-z) = -SINH(z)
  

Revision as of 00:18, 7 November 2013

SINH(z)


  • where z is any real number

Description

  • This function gives the Hyperbolic SIN of 'z'.
  • It's also called as Circular function.
  • Here or , where is the imaginary unit and
  • The relation between Hyperbolic & Trigonometric function is &
  • SINH(-z) = -SINH(z)

Examples

SINH(z)

  • z is any real number.
SINH(z) Value
SINH(0) 0
SINH(10) 11013.23287
SINH(-3) -10.0178749274099

See Also

References