Difference between revisions of "Manuals/calci/PASCALTRIANGLE"

From ZCubes Wiki
Jump to navigation Jump to search
Line 13: Line 13:
  
 
==Examples==
 
==Examples==
*1.PASCALTRIANGLE(1)=1
+
*1.PASCALTRIANGLE(1)=
*2.PASCALTRIANGLE(2)=1   
+
                  1
 +
*2.PASCALTRIANGLE(2)=
 +
                  1   
 
                   1      1
 
                   1      1
  
*3.PASCALTRIANGLE(3)=1     
+
*3.PASCALTRIANGLE(3)=
 +
                  1     
 
                   1      1
 
                   1      1
 
                   1      2        1
 
                   1      2        1
 
   
 
   
 
*4.PASCALTRIANGLE(0)=NULL
 
*4.PASCALTRIANGLE(0)=NULL
 
  
 
==See Also==
 
==See Also==

Revision as of 01:50, 7 January 2014

PASCALTRIANGLE(r)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} is the row number.

Description

  • This function gives the Coefficients of the Pascal triangle.
  • In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle PASCALTRIANGLE(r)} , r is the row number of the Pascal triangle.
  • Pascal triangle is the arrangement of numbers of the Binomial coefficients in a triangular shape.
  • It is started with the number 1 at the top in the 1st row.
  • Then from the 2nd row each number in the triangle is the sum of the two directly above it.
  • The construction is related to the binomial coefficients by Pascal's rule is :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x+y)^n=\sum_{k=0}^n \binom{n}{k}x^{n-k} .y^k } . where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dbinom{n}{k}} is the binomial coefficient.

  • This function will return the result as error when the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r \le 0} .

Examples

  • 1.PASCALTRIANGLE(1)=
                 1
  • 2.PASCALTRIANGLE(2)=
                 1   
                 1       1
  • 3.PASCALTRIANGLE(3)=
                 1    
                 1       1
                 1       2         1

  • 4.PASCALTRIANGLE(0)=NULL

See Also

References