Difference between revisions of "Manuals/calci/MOORE"

From ZCubes Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
*The Moore matrix has successive powers of the applied to the first column, so it is an mxn matrix of the form:
 
*The Moore matrix has successive powers of the applied to the first column, so it is an mxn matrix of the form:
 
<math>\begin{bmatrix}
 
<math>\begin{bmatrix}
\alpha_1  & \alpha_1^{q}  &\cdots & \alpha_1^{q}^{n-1}  \\
+
\alpha_1  & \{alpha_1}^{q}  &\cdots & \{alpha_1}^{q}^{n-1}  \\
\alpha_2  & \alpha_2^{q}  &\cdots & \alpha_2^{q}^{n-1}  \\  
+
\alpha_2  & \{alpha_2}^{q}  &\cdots & \{alpha_2}^{q}^{n-1}  \\  
\alpha_3  & \alpha_3^{q}  &\cdots & \alpha_3^{q}^{n-1}  \\
+
\alpha_3  & \{alpha_3}^{q}  &\cdots & \{alpha_3}^{q}^{n-1}  \\
 
\vdots & \ddots & \vdots \\  
 
\vdots & \ddots & \vdots \\  
\alpha_m  & \alpha_m^{q}  &\cdots & \alpha_m^{q}^{n-1}  
+
\alpha_m  & \{alpha_m}^{q}  &\cdots & \{alpha_m}^{q}^{n-1} \\
 
\end{bmatrix} </math>
 
\end{bmatrix} </math>
 
*In calci, MATRIX("moore") is giving the matrixwith the element 1 of order 3.  
 
*In calci, MATRIX("moore") is giving the matrixwith the element 1 of order 3.  
 
*And MATRIX("moore",4,1..4) is giving Moore matrix starting element 1 to 4 of order 4.
 
*And MATRIX("moore",4,1..4) is giving Moore matrix starting element 1 to 4 of order 4.

Revision as of 09:54, 30 April 2015

MATRIX("MOORE",order)


  • is the size of the Moore matrix.

Description

  • This function gives the moore matrix of order 3 with the element 1.
  • A moore matrix, is a square matrix over a finite field.
  • When moore matrix is a square matrix, then its deteminant is called a Moore determinant.
  • But it is unrelated to the Moore determinant of a quaternionic Hermitian matrix.
  • The Moore matrix has successive powers of the applied to the first column, so it is an mxn matrix of the form:

Failed to parse (unknown function "\begin{bmatrix}"): {\displaystyle \begin{bmatrix} \alpha_1 & \{alpha_1}^{q} &\cdots & \{alpha_1}^{q}^{n-1} \\ \alpha_2 & \{alpha_2}^{q} &\cdots & \{alpha_2}^{q}^{n-1} \\ \alpha_3 & \{alpha_3}^{q} &\cdots & \{alpha_3}^{q}^{n-1} \\ \vdots & \ddots & \vdots \\ \alpha_m & \{alpha_m}^{q} &\cdots & \{alpha_m}^{q}^{n-1} \\ \end{bmatrix} }

  • In calci, MATRIX("moore") is giving the matrixwith the element 1 of order 3.
  • And MATRIX("moore",4,1..4) is giving Moore matrix starting element 1 to 4 of order 4.