Difference between revisions of "Manuals/calci/COTH"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> COTH(SomeNumber) where '''SomeNumber''' is any real number </div> ---- <div id="1SpaceContent" class="zconte...") |
|||
| Line 1: | Line 1: | ||
| − | <div | + | <div style="font-size:30px">'''COTH(z)'''</div><br/> |
| + | * where z is any real number | ||
| + | ==Description== | ||
| − | COTH( | + | *This function gives the hyperbolic cotangent of 'z',also it is called as circular function. |
| + | *COTH is the reciprocal of TANH function. | ||
| + | *COTH z=cosh z/sinh z.i.e. e^z+e^-z/e^z-e^-z or Icot iz.where 'I' is the imginary unit and i=sqrt(-1). | ||
| + | *Also relation between hyperbolic &trignometric function is | ||
| + | *cot(iz)=-icothz&coth(iz)=-icot z | ||
| − | + | == Examples == | |
| + | '''COTH(z)''' | ||
| + | *'''z''' is any real number. | ||
| − | + | {|id="TABLE1" class="SpreadSheet blue" | |
| − | |||
| − | |||
| − | + | |- class="even" | |
| + | |'''COTH(z)''' | ||
| + | |'''Value(Radian)''' | ||
| − | + | |- class="odd" | |
| − | + | | COTH(1) | |
| − | + | | 1.3130352854993312 | |
| − | COTH | + | |- class="even" |
| + | | COTH(30) | ||
| + | | 1 | ||
| − | + | |- class="odd" | |
| − | + | | COTH(-45) | |
| − | + | 1 | |
| − | + | | | |
| − | COTH | + | |} |
| − | |||
| − | |||
| − | - | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ==See Also== | |
| − | + | *[[Manuals/calci/SINH| SINH]] | |
| − | + | *[[Manuals/calci/COSH| COSH]] | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | *[[Manuals/calci/TANH | TANH]] | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ==References== | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | *[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions] | |
| − | + | *[http://en.wikipedia.org/wiki/Hyperbolic_function Hyperbolic Function] | |
Revision as of 06:02, 5 November 2013
COTH(z)
- where z is any real number
Description
- This function gives the hyperbolic cotangent of 'z',also it is called as circular function.
- COTH is the reciprocal of TANH function.
- COTH z=cosh z/sinh z.i.e. e^z+e^-z/e^z-e^-z or Icot iz.where 'I' is the imginary unit and i=sqrt(-1).
- Also relation between hyperbolic &trignometric function is
- cot(iz)=-icothz&coth(iz)=-icot z
Examples
COTH(z)
- z is any real number.
| COTH(z) | Value(Radian) |
| COTH(1) | 1.3130352854993312 |
| COTH(30) | 1 |
COTH(-45)
1 |