Difference between revisions of "Manuals/calci/IMLOG2"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...")
 
Line 1: Line 1:
<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
<div style="font-size:30px">'''IMLOG2(z)'''</div><br/>
 +
*<math>z</math> is the complex number is of the form <math>x+iy</math>  
  
Syntax
+
==Description==
 +
*This function gives the binary logarithm of a complex number.
 +
*IMLOG2(z),Where z is the complex number in the form of "x+iy".i.e. x&y are the real numbers.
 +
*'I' imaginary unit .i=sqrt(-1).
 +
*Binary logarithm is the inverse function of n ↦ 2n.
 +
*Log base 2 is called Binary logarithm.
 +
*To find the Binary logarithm of a complex number we have to calculate from the natural logarithm.
 +
*So log2(x+iy)=(log2 e)ln(x+iy).We can use COMPLEX function to convert real and imaginary number in to a complex number.
  
</div></div>
+
==Examples==
----
 
<div id="4SpaceContent" align="left"><div class="ZEditBox" align="justify">
 
  
Remarks
+
#IMLOG2("2+3i")=1.85021985921295+1.41787163085485i
 +
#IMLOG2("5-6i")=2.96536866900967-1.26388460522614i
 +
#IMLOG2("15")=3.90689059590921
 +
#IMLOG2("11i")=3.45943161890355+2.26618007108801i
 +
#IMLOG2("0")=NULL
  
</div></div>
+
==See Also==
----
+
*[[Manuals/calci/IMLOG10  | IMLOG10 ]]
<div id="2SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
*[[Manuals/calci/LOG2  | LOG2 ]]
 +
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
  
Examples
 
  
</div></div>
+
==References==
----
+
[http://en.wikipedia.org/wiki/Bessel_function Bessel Function]
<div id="8SpaceContent" align="left"><div class="ZEditBox" align="justify">'''<font face="Times New Roman">''''''''''''<font size="6"> </font>''' '''''''''</font>'''</div></div>
 
----
 
<div id="11SpaceContent" align="left"><div class="ZEditBox mceEditable" align="justify">
 
 
 
<font size="5">Description</font>
 
 
 
</div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">This function calculates the base-2 logarithm of a complex number in a + bi or a + bj text format.</font></font></font>
 
 
 
</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"><font size="6">'''<font face="Arial">IMLOG2</font>'''</font></div></div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">The base-2 logarithm of a complex number can be calculated from the natural logarithm as follows: </font></font></font>
 
 
 
<font color="#484848" face="Arial">log<sub>2</sub> (x+yi) = (log<sub>2</sub>e)1n (x+yi)</font>
 
 
 
<font color="#484848"></font>
 
 
 
</div></div>
 
----
 
<div id="6SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IMLOG2'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IN'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where IN</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">   is a complex number .</font></font></font>
 
 
 
</div></div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 2.428990497563786+0.5489546632866346i
 
| class="                                                              sshl_f  " |
 
|
 
|
 
|- class="even"
 
| class=" " | Row2
 
| class="f52543                                                                                                                              " |
 
| class="SelectTD" |
 
|
 
|
 
|- class="odd"
 
| Row3
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
|
 
|
 
|
 
|
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Let's see an example.</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">I.e.=IMLOG2(“5+2i”) is 2.42899+0.54895i</font></font></font>
 
 
 
<br />
 
 
 
</div>
 
----
 

Revision as of 03:13, 16 December 2013

IMLOG2(z)


  • is the complex number is of the form

Description

  • This function gives the binary logarithm of a complex number.
  • IMLOG2(z),Where z is the complex number in the form of "x+iy".i.e. x&y are the real numbers.
  • 'I' imaginary unit .i=sqrt(-1).
  • Binary logarithm is the inverse function of n ↦ 2n.
  • Log base 2 is called Binary logarithm.
  • To find the Binary logarithm of a complex number we have to calculate from the natural logarithm.
  • So log2(x+iy)=(log2 e)ln(x+iy).We can use COMPLEX function to convert real and imaginary number in to a complex number.

Examples

  1. IMLOG2("2+3i")=1.85021985921295+1.41787163085485i
  2. IMLOG2("5-6i")=2.96536866900967-1.26388460522614i
  3. IMLOG2("15")=3.90689059590921
  4. IMLOG2("11i")=3.45943161890355+2.26618007108801i
  5. IMLOG2("0")=NULL

See Also


References

Bessel Function