Difference between revisions of "Manuals/calci/HYPGEOMDIST"

From ZCubes Wiki
Jump to navigation Jump to search
Line 36: Line 36:
 
==Examples==
 
==Examples==
  
Draw 6 cards from a deck without replacement.
+
#Draw 6 cards from a deck without replacement.What is the probability of getting two hearts?
What is the probability of getting two hearts?
+
Here M = 13 number of hearts
Here M = 13 number of hearts
+
N = 52 total number of cards
N = 52 total number of cards
+
so N-M= 52-13= 39 and  
so N-M= 52-13= 39 and  
+
x=2,n=6 so n-x=6-2=4
x=2,n=6 so n-x=6-2=4
+
=HYPGEOMDIST(2,6,13,52)=0.315129882
HYPGEOMDIST(2,6,13,52)=0.315129882
+
#42 balls are numbered 1 - 42.You select six numbers between 1 and 42. What is the probability that they contain
2.42 balls are numbered 1 - 42.
 
You select six numbers between 1 and 42. What is the probability that they contain
 
 
(i)match 3?
 
(i)match 3?
 
(ii) match 4?
 
(ii) match 4?
 
(i)Here M= 6,N=42,x=3and n=6
 
(i)Here M= 6,N=42,x=3and n=6
HYPGEOMDIST(3,6,6,42)=0.02722185
+
HYPGEOMDIST(3,6,6,42)=0.02722185
(ii)Here M= 6,N=42,x=4and n=6
+
(ii)Here M= 6,N=42,x=4and n=6
HYPGEOMDIST(4,6,6,42)=0.001801446
+
HYPGEOMDIST(4,6,6,42)=0.001801446
3.
 
  
 
==See Also==
 
==See Also==

Revision as of 03:13, 11 December 2013

HYPGEOMDIST(n1,n2,n3,n4)


  • is the sample's success.
  • is the sample's size.
  • is population's success.
  • is the population size.

Description

  • This function gives the result of Hypergeometric Distribution.
  • This distribution is a discrete probability distribution which is contrast to the binomial distribution.
  • A Hypergeometric random variable is the number of successes that result from a Hypergeometric experiment.
  • The probability distribution of a Hypergeometric random variable is called a Hypergeometric Distribution.
  • In HYPGEOMDIST(n1,n2,n3,n4) where n1 is the number of items in the Sample that are classified as successes.
  • is the total number of items in the sample.
  • is the number of items in the population that are classified as successes and is the total number of items in the sample.
  • The following conditions are applied to the Hypergeometric distribution:
1.This distribution is applies to sampling without replacement from a finite population whose elements can be
classified into two categories like Success or Failure.
2.The population or set to be sampled consists of N individuals, objects,or elements 
3.Each individual can be  success (S) or a failure (F), and there are M successes in the population.
4.A sample of  individuals is selected without replacement in such a way that each subset of 
  size  is equally likely to be chosen.
  • The Hyper geometric probability distribution is:

for is an integer satisfying . where is sample's success.

  • is the sample's size.
  • is population's success and is the population size.
  • Here we can give any positive real numbers.
  • Suppose we are assigning any decimals numbers it will change in to Integers.
  • This function will give result as error when
1.Any one of the argument is non-numeric.
2. or n1 is greater than the smaller value of n2 or n3.
3. is less than the bigger of 0 or(n2-n4+n3)
4. or 
5. or   or 

Examples

  1. Draw 6 cards from a deck without replacement.What is the probability of getting two hearts?
Here M = 13 number of hearts
N = 52 total number of cards
so N-M= 52-13= 39 and 
x=2,n=6 so n-x=6-2=4
=HYPGEOMDIST(2,6,13,52)=0.315129882
  1. 42 balls are numbered 1 - 42.You select six numbers between 1 and 42. What is the probability that they contain

(i)match 3? (ii) match 4? (i)Here M= 6,N=42,x=3and n=6

HYPGEOMDIST(3,6,6,42)=0.02722185
(ii)Here M= 6,N=42,x=4and n=6
HYPGEOMDIST(4,6,6,42)=0.001801446

See Also

References

Hypergeometric Distribution