Difference between revisions of "Manuals/calci/UNIFORM"

From ZCubes Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
*The probability density function of the uniform distribution in the interval [a,b] are:  
 
*The probability density function of the uniform distribution in the interval [a,b] are:  
 
<math>P(x)=\begin{cases}
 
<math>P(x)=\begin{cases}
             0    &for &x<a,\\  
+
             0    for x<a,\\  
             1/b-a &for &a<x<b \\
+
             1/b-a for a<x<b \\
             0    &for &x>b. \end{cases}</math>
+
             0    for x>b. \end{cases}</math>
  
  

Revision as of 23:23, 6 February 2014

UNIFORMDISTRIBUTED(x,ll,ul)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x } is the value of the function.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ll } is the lower limit.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ul } is the upper limit of the function.

Description

  • This function gives the probability of the unifom distribution.
  • Uniform distribution is a symmetric probability distribution.
  • It is also called rectangular distribution.
  • In UNIFORMDISTRIBUTED(x,ll,ul) ,x is the numeric value to find the probability of the distribution, ll is the lower limit value and ul is the upper limit value.
  • The probability density function of the uniform distribution in the interval [a,b] are:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(x)=\begin{cases} 0 for x<a,\\ 1/b-a for a<x<b \\ 0 for x>b. \end{cases}}


Examples

  1. UNIFORMDISTRIBUTED(4,2,3) = 4030484680552036 2.6280935418326408 2.2810050058178604 2.97846262995153679
  2. UNIFORMDISTRIBUTED(5,3,6) = 5.522187389200553 3.566177821950987 5.04674904467538 5.301322509767488 4.9094569575972855

See Also

References