Difference between revisions of "Manuals/calci/LOGNORMDIST"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<div style="font-size:30px">'''LOGNORMDIST(x,m,sd)'''</div><br/>
+
<div style="font-size:30px">'''LOGNORMDIST(number,mean,standarddeviation)'''</div><br/>
*<math>x</math> is the value ,<math> m </math> is the mean of <math>log(x)</math>,
+
*<math>number</math> is the value.
*And <math> sd</math> is the standard deviation of <math>log(x)</math>.
+
*<math> mean </math> is the mean value of <math>log(x)</math>,
 +
*<math> standarddeviation</math> is the standard deviation value of <math>log(x)</math>.
 +
 
 
==Description==
 
==Description==
 
 
*This function gives the value of the cumulative log normal distribution.
 
*This function gives the value of the cumulative log normal distribution.
 
*This  distribution is the continuous probability distribution.  
 
*This  distribution is the continuous probability distribution.  
Line 17: Line 18:
 
*This function will give the result as error when
 
*This function will give the result as error when
 
  1. Any one of the argument is non-numeric.
 
  1. Any one of the argument is non-numeric.
  2. Suppose <math> x \le 0 </math> or <math> sd \le 0</math>
+
  2. Suppose <math> number \le 0 </math> or <math> standarddeviation \le 0</math>
 +
 
 +
==ZOS Section==
 +
*The syntax is to calculate cumulative log normal distribution in ZOS is <math>LOGNORMDIST(number,mean,standarddeviation)</math>.
 +
**<math>number</math> is the value.
 +
**<math> mean </math> is the mean value of <math>log(x)</math>.
 +
**<math> standarddeviation</math> is the standard deviation value of <math>log(x)</math>.
 +
*For e.g.,LOGNORMDIST(10,8.002,4.501)
 +
 
  
 
==Examples==
 
==Examples==

Revision as of 23:13, 29 June 2014

LOGNORMDIST(number,mean,standarddeviation)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle number} is the value.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle mean } is the mean value of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle log(x)} ,
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle standarddeviation} is the standard deviation value of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle log(x)} .

Description

  • This function gives the value of the cumulative log normal distribution.
  • This distribution is the continuous probability distribution.
  • Lognomal distribution is also called Galton's distribution.
  • A random variable which is log-normally distributed takes only positive real values.
  • Suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} is Normally Distributed function, then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=ln(x)} also Normally Distributed
  • also Normally Distributed.
  • Let the Normal Distribution function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} and its Mean= Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} , Standard Deviation = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma}
  • Then the lognormal cumulative distribution is calculated by:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x,\mu,\sigma)=\frac{1}{2} \left[1+ erf \left (\frac{ln(x)-\mu)}{\sigma \sqrt{2}}\right)\right ]= \varphi\left[\frac{ln(x)-\mu}{\sigma}\right ]} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle erf} is the error function,. The error function (also called the Gauss error function) is a special function of sigmoid shape which occurs in probability, statistics and partial differential equations.

  • And Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi} is the Cumulative Distribution function of the Standard Normal distribution.
  • This function will give the result as error when
1. Any one of the argument is non-numeric.
2. Suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle  number \le 0 }
 or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle  standarddeviation \le 0}

ZOS Section

  • The syntax is to calculate cumulative log normal distribution in ZOS is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle LOGNORMDIST(number,mean,standarddeviation)} .
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle number} is the value.
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle mean } is the mean value of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle log(x)} .
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle standarddeviation} is the standard deviation value of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle log(x)} .
  • For e.g.,LOGNORMDIST(10,8.002,4.501)


Examples

  1. =LOGNORMDIST(2,5.4,2.76) = 0.044061652
  2. =LOGNORMDIST(10,24.05,12.95) = 0.046543186
  3. =LOGNORMDIST(50,87.0036,42.9784) = 0.026597569
  4. =LOGNORMDIST(-10,5,2) = NAN

See Also

References

Log-normal distribution