Difference between revisions of "Manuals/calci/LEHMER"
Jump to navigation
Jump to search
| Line 4: | Line 4: | ||
==Description== | ==Description== | ||
*This function gives the lehmer matrix of order 3. | *This function gives the lehmer matrix of order 3. | ||
| − | *The the n×n Lehmer matrix, is the constant symmetric matrix defined by <math>a_{ij}=\frac | + | *The the n×n Lehmer matrix, is the constant symmetric matrix defined by <math>a_{ij}=\frac{min {i,j}}{max {i,j}} = |
\begin{cases} \frac{i}{j} & j\ge i \\ | \begin{cases} \frac{i}{j} & j\ge i \\ | ||
\frac{j}{i} & j > i | \frac{j}{i} & j > i | ||
Revision as of 08:58, 30 April 2015
MATRIX("LEHMER",order)
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle order} is the order of the Lehmer matrix.
Description
- This function gives the lehmer matrix of order 3.
- The the n×n Lehmer matrix, is the constant symmetric matrix defined by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{ij}=\frac{min {i,j}}{max {i,j}} = \begin{cases} \frac{i}{j} & j\ge i \\ \frac{j}{i} & j > i \end{cases} }
- Also the inverse of a Lehmer matrix is a tridiagonal matrix and is known to be symmetric tridiagonal.
- And the value of this matrix have strictly negative entries (i.e., with positive eigenvalues).
- Example of 2x2 and 3x3 lehmer matrices and its inverses are
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_2=\begin{pmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_3=\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3}\\ \frac{1}{2} & 1 & \frac{2}{3}\\ \frac{1}{3} & \frac{2}{3} & 1 \\ \end{pmatrix}}