Difference between revisions of "Manuals/calci/VANDERMONDE"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div style="font-size:30px">'''VANDERMONDE'''</div><br/>")
 
Line 1: Line 1:
<div style="font-size:30px">'''VANDERMONDE'''</div><br/>
+
<div style="font-size:30px">'''MATRIX("VANDERMONDE",order)'''</div><br/>
 +
*<math>order</math> is the size of the Vandermonde matrix.
 +
 
 +
==Description==
 +
*This function gives the matrix with the property of vandermonde.
 +
*A Vandermonde matrix is a matrix presents a geometric progression in every row or in every column with the first element being 1.
 +
*A Vandermonde matrix of order n is of the form:
 +
<math>
 +
V=\begin{bmatrix}
 +
1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^{n-1}\\
 +
1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^{n-1}\\
 +
1 & \alpha_3 & \alpha_3^2 & \dots & \alpha_3^{n-1}\\
 +
\vdots & \vdots & \vdots & \ddots &\vdots \\
 +
1 & \alpha_m & \alpha_m^2 & \dots & \alpha_m^{n-1}
 +
\end{bmatrix} </math>
 +
*A Vandermonde matrix is sometimes also called an alternant matrix.
 +
*Users can assign the numbers for vandermonde matrix. For e.g.,MATRIX("vandermonde",10,1..10)
 +
 
 +
==Examples==
 +
*1.MATRIX("vandermonde")
 +
{| class="wikitable"
 +
|-
 +
| 1 || 0.9070418316405267 || 0.8227248843458015
 +
|-
 +
| 1 || 0.9100837279111147 || 0.8282523918085919
 +
|-
 +
| 1 || 0.9911492799874395 || 0.9823768952196198
 +
|}
 +
*2.MATRIX("vandermonde",4,10..14)
 +
{| class="wikitable"
 +
|-
 +
| 1 || 10 || 100 || 1000
 +
|-
 +
| 1 || 11 || 121 || 1331
 +
|-
 +
| 1 || 12 || 144 || 1728
 +
|-
 +
| 1 || 13 || 169 || 2197
 +
|}
 +
 
 +
==See Also==
 +
*[[Manuals/calci/SYMMETRIC| SYMMETRIC]]
 +
*[[Manuals/calci/PASCAL| PASCAL]]
 +
*[[Manuals/calci/TRIANGULAR| TRIANGULAR]]
 +
 
 +
==References==

Revision as of 13:10, 5 May 2015

MATRIX("VANDERMONDE",order)


  • is the size of the Vandermonde matrix.

Description

  • This function gives the matrix with the property of vandermonde.
  • A Vandermonde matrix is a matrix presents a geometric progression in every row or in every column with the first element being 1.
  • A Vandermonde matrix of order n is of the form:

  • A Vandermonde matrix is sometimes also called an alternant matrix.
  • Users can assign the numbers for vandermonde matrix. For e.g.,MATRIX("vandermonde",10,1..10)

Examples

  • 1.MATRIX("vandermonde")
1 0.9070418316405267 0.8227248843458015
1 0.9100837279111147 0.8282523918085919
1 0.9911492799874395 0.9823768952196198
  • 2.MATRIX("vandermonde",4,10..14)
1 10 100 1000
1 11 121 1331
1 12 144 1728
1 13 169 2197

See Also

References