Difference between revisions of "Manuals/calci/TOEPLITZ"

From ZCubes Wiki
Jump to navigation Jump to search
Line 54: Line 54:
 
| 767 || 766 || 765 || 761  
 
| 767 || 766 || 765 || 761  
 
|}
 
|}
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|CgfkEUOFAj0|280|center|TOEPLITZ Matix}}
  
 
==See Also==
 
==See Also==

Revision as of 08:04, 26 July 2015

MATRIX("TOEPLITZ",order)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle order} is the size of the Toeplitz matrix.

Description

  • This function gives the matrix of order 3 with the property of toeplitz matrix.
  • A Toeplitz matrix is a matrix with the constant values along negative sloping diagonals(descending diagonal from left to right).
  • If the i,j element of A is denoted Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_{i,j}} , then we have

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_{i,j} = A_{i+1,j+1} = a_{i-j}} .

  • Any nxn matrix A of the form:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} a_{0} & a_{-1} & a_{-2} & \ldots & \ldots &a_{-n+1} \\ a_{1} & a_0 & a_{-1} & \cdots & \ddots & \vdots \\ a_{2} & a_{1} & \cdots& \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2}\\ \vdots & & \ddots & a_{1} & a_{0}& a_{-1} \\ a_{n-1} & \ldots & \ldots & a_{2} & a_{1} & a_{0} \end{bmatrix} }

  • The property of Toeplitz matrix is :Toeplitz matrices are persymmetric.
  • Symmetric Toeplitz matrices are both centrosymmetric and bisymmetric.
  • Toeplitz matrices commute asymptotically.

Examples

  • MATRIX("toeplitz")
0.5852752963546664 0.5083035423886031 0.8240970941260457
0.5852752963546664 0.5852752963546664 0.5083035423886031
0.5083035423886031 0.5852752963546664 0.585275296354666
  • MATRIX("toeplitz",5,1..7)
1 2 3 4 5
6 1 2 3 4
7 6 1 2 3
1 7 6 1 2
2 1 7 6 1
  • MATRIX("toeplitz",4,761..770)
761 762 763 764
765 761 762 763
766 765 761 762
767 766 765 761

Related Videos

TOEPLITZ Matix

See Also

References