Difference between revisions of "Manuals/calci/PENTADIAGONAL"

From ZCubes Wiki
Jump to navigation Jump to search
 
Line 22: Line 22:
  
 
==Examples==
 
==Examples==
*1.MATRIX("pentadiagonal")
+
*1.MATRIX("pentadiagonal") =22
 +
*2.MATRIX("pentadiagonal",3)
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 31: Line 32:
 
| 21 || -25 || -64  
 
| 21 || -25 || -64  
 
|}
 
|}
*2.MATRIX("pentadiagonal",6)
+
*3.MATRIX("pentadiagonal",6)
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 46: Line 47:
 
| 0 || 0 || 0 || -43 || 19 || 89  
 
| 0 || 0 || 0 || -43 || 19 || 89  
 
|}
 
|}
*3.MATRIX("pentadiagonal:negative",4)
+
*4.MATRIX("pentadiagonal:negative",4)
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 57: Line 58:
 
| 0 || -12.941046571359038 || -31.090207281522453 || -52.342877350747585  
 
| 0 || -12.941046571359038 || -31.090207281522453 || -52.342877350747585  
 
|}
 
|}
*4.MATRIX("pentadiagonal:positive",5)
+
*5.MATRIX("pentadiagonal:positive",5)
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 70: Line 71:
 
| 0 || 0 || 32.176876766607165 || 47.92787255719304 || 48.10425683390349
 
| 0 || 0 || 32.176876766607165 || 47.92787255719304 || 48.10425683390349
 
|}
 
|}
+
 
 
==See Also==
 
==See Also==
 
*[[Manuals/calci/SYMMETRIC| SYMMETRIC]]
 
*[[Manuals/calci/SYMMETRIC| SYMMETRIC]]

Latest revision as of 01:33, 26 October 2015

MATRIX("PENTADIAGONAL",order)


  • is the size of the Pentadiagonal matrix.

Description

  • This function gives the pentadiagonal matrix of order 3.
  • A pentadiagonal matrix is a matrix that is nearly diagonal.
  • So it is a matrix in which the only nonzero entries are on the main diagonal, and the first two diagonals above and below it.
  • The form of pentadiagonal matrix is:

.

  • When n is the size of the matrix, a pentadiagonal matrix has atmost 5n-6 nonzero entries.
  • Here MATIRX("pentadiagonal") is showing the penta diagonal matrix of order 3 with the integer numbers.
  • Also in Calci users can get a deimal values with positive and negative numbers.
  • The syntax is to get the decimal penta diagonal matrix is MATRIX("pentadiagonal:negative") and MATRIX(pentadiagonal:positive")

Examples

  • 1.MATRIX("pentadiagonal") =22
  • 2.MATRIX("pentadiagonal",3)
-58 15 -4
-54 55 -75
21 -25 -64
  • 3.MATRIX("pentadiagonal",6)
54 -56 -28 0 0 0
62 -96 -82 -49 0 0
15 23 20 30 94 0
0 80 95 76 -82 66
0 0 -60 -27 -82 -87
0 0 0 -43 19 89
  • 4.MATRIX("pentadiagonal:negative",4)
-59.92012487258762 -79.75753229111433 -20.13208125717938 0
-47.0609312877059 -7.832704461179674 -29.973211092874408 -12.44902245234698
-47.85296192858368 -67.0970072504133 -53.094227402471006 -84.4662182033062
0 -12.941046571359038 -31.090207281522453 -52.342877350747585
  • 5.MATRIX("pentadiagonal:positive",5)
86.68749532662332 69.28418821189553 15.4073191806674 0 0
35.21442376077175 31.06112303212285 35.75007226318121 77.74382838979363 0
24.096227367408574 42.69053868483752 98.5696179093793 5.866385693661869 81.69623236171901
0 80.96880922093987 67.79956801328808 45.05093654152006 71.03362120687962
0 0 32.176876766607165 47.92787255719304 48.10425683390349

See Also

References