Difference between revisions of "Manuals/calci/DET"
Jump to navigation
Jump to search
(Created page with "==DET==") |
|||
| Line 1: | Line 1: | ||
| − | ==DET== | + | <div style="font-size:30px">'''DET(array)'''</div><br/> |
| + | *<math>array</math> is the set of numbers. | ||
| + | |||
| + | ==Description== | ||
| + | *This function gives the determinant value of a matrix. | ||
| + | *To calculate the determinant of a matrix, we can choose only square matrix.i.e. Number of rows and number of columns should be equal. | ||
| + | *Determinant of the identity matrix is always 1. | ||
| + | *Determinant of the matrix <math>A</math> is denoted by <math>det(A)</math> or <math>|A|</math>. | ||
| + | *Let <math>A</math> be 2x2 matrix with the elements | ||
| + | <math>A = \begin{bmatrix} | ||
| + | a & b \\ | ||
| + | c & d \\ | ||
| + | \end{bmatrix} | ||
| + | </math> | ||
| + | *Then <math>det(A)=ad-bc</math>, where <math>a,b,c,d</math> all are real numbers. | ||
| + | *Let <math>A</math> be the 3x3 matrix with the elements | ||
| + | <math>A = \begin{bmatrix} | ||
| + | a & b & c \\ | ||
| + | d & e & f \\ | ||
| + | g & h & i \\ | ||
| + | \end{bmatrix} | ||
| + | </math> | ||
| + | Then <math>|A|=a\begin{vmatrix} | ||
| + | e & f \\ | ||
| + | h & i | ||
| + | \end{vmatrix} -b\begin{vmatrix} | ||
| + | d & f \\ | ||
| + | g & i | ||
| + | \end{vmatrix} +c\begin{vmatrix} | ||
| + | d & e \\ | ||
| + | g & h | ||
| + | \end{vmatrix}</math>: | ||
| + | <math>|A| =a(ei-fh)-b(di-fg)+c(dh-eg)</math> | ||
| + | *Let <math>A</math> be a square matrix of order <math>n</math>. Write <math>A = (a_{ij})</math>, | ||
| + | *Where <math>a_{ij}</math> is the entry on the <math>i^{th}</math> row and <math>j^{th}</math> column and <math>i=1</math> to <math>n</math> & <math>j=1</math> to <math>n</math>. | ||
| + | *For any <math>i</math> and <math>j</math>, set <math>A_{ij}</math> (called the co-factors), then the general formula for determinant of the matrix <math>A</math> is, | ||
| + | <math>|A|=\sum_{j=1}^n a_{ij} A_{ij}</math>, for any fixed <math>i</math>. | ||
| + | Also<math>|A|=\sum_{i=1}^n a_{ij} A_{ij}</math>, for any fixed <math>j</math>. | ||
| + | *This function will give the result as error when | ||
| + | 1. Any one of the element in array is empty or contain non-numeric | ||
| + | 2. Number of rows is not equal to number of columns | ||
| + | |||
| + | |||
| + | ==Examples== | ||
| + | #=DET([[6,4,8],[3,6,1],[2,4,5]]) = 104 | ||
| + | #=DET([[-5,10],[6,-8]]) = -20 | ||
| + | #=DET([[1,0,2,1],[4,0,2,-1],[1,4,5,2],[3,1,2,0]]) = 17 | ||
| + | #=DET([1,2,3],[5,2,8]) = NAN | ||
| + | |||
| + | |||
| + | ==See Also== | ||
| + | *[[Manuals/calci/MINVERSE | MINVERSE ]] | ||
| + | *[[Manuals/calci/MMULT | MMULT ]] | ||
| + | |||
| + | ==References== | ||
| + | [http://en.wikipedia.org/wiki/Determinant Determinant ] | ||
Revision as of 15:46, 21 November 2016
DET(array)
- is the set of numbers.
Description
- This function gives the determinant value of a matrix.
- To calculate the determinant of a matrix, we can choose only square matrix.i.e. Number of rows and number of columns should be equal.
- Determinant of the identity matrix is always 1.
- Determinant of the matrix is denoted by or .
- Let be 2x2 matrix with the elements
- Then , where all are real numbers.
- Let be the 3x3 matrix with the elements
Then :
- Let be a square matrix of order . Write ,
- Where is the entry on the row and column and to & to .
- For any and , set (called the co-factors), then the general formula for determinant of the matrix is,
, for any fixed . Also, for any fixed .
- This function will give the result as error when
1. Any one of the element in array is empty or contain non-numeric 2. Number of rows is not equal to number of columns
Examples
- =DET([[6,4,8],[3,6,1],[2,4,5]]) = 104
- =DET([[-5,10],[6,-8]]) = -20
- =DET([[1,0,2,1],[4,0,2,-1],[1,4,5,2],[3,1,2,0]]) = 17
- =DET([1,2,3],[5,2,8]) = NAN