Difference between revisions of "Manuals/calci/CIS"

From ZCubes Wiki
Jump to navigation Jump to search
Line 5: Line 5:
 
*This function gives the CIS value.
 
*This function gives the CIS value.
 
*CIS  is another name for the complex exponential.  
 
*CIS  is another name for the complex exponential.  
*<math>Cis(x)=e^{ix}=Cosx+i Sinx</math>, where <math>Cos</math> is the <math>Cosine</math> function,<math>i</math> is the imaginary unit and <math>Sin</math> is the <math>Sine</math>.  
+
*<math>Cis(x)=e^{ix}=Cosx+i Sinx</math>, where <math>Cos</math> is the <math>Cosine</math> function,<math>i</math> is the imaginary unit and <math>Sin</math> is the <math>Sine</math> function.  
 
*Also <math> Cos(x)= \frac{e^{ix}+e^{-ix}}{2}</math>;
 
*Also <math> Cos(x)= \frac{e^{ix}+e^{-ix}}{2}</math>;
 
* <math>Sin(x)=\frac{e^{ix}-e^{-ix}}{2i}</math>  and  <math>i^2</math>=-1.
 
* <math>Sin(x)=\frac{e^{ix}-e^{-ix}}{2i}</math>  and  <math>i^2</math>=-1.
 
*So <math>Cis</math> abbreviates <math>Cos + i Sin</math>.
 
*So <math>Cis</math> abbreviates <math>Cos + i Sin</math>.
 +
 +
==Examples==
 +
#CIS(45) = 0.5253219888177297+i 0.8509035245341184
 +
#CIS(180) = -0.5984600690578581-i-0.8011526357338304
 +
#CIS(90.53) = -0.838546204483341+ⅈ0.5448304901036493
 +
 +
 +
==See Also==
 +
*[[Manuals/calci/SIN | SIN]]
 +
*[[Manuals/calci/COS  | COS ]]
 +
 +
 +
==References==
 +
[http://mathworld.wolfram.com/Cis.html Complex Exponential]

Revision as of 14:27, 22 December 2016

CIS (Theta)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Theta} is the angle value.

Description

  • This function gives the CIS value.
  • CIS is another name for the complex exponential.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cis(x)=e^{ix}=Cosx+i Sinx} , where is the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cosine} function,Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} is the imaginary unit and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Sin} is the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Sine} function.
  • Also Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cos(x)= \frac{e^{ix}+e^{-ix}}{2}} ;
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Sin(x)=\frac{e^{ix}-e^{-ix}}{2i}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i^2} =-1.
  • So Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cis} abbreviates Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Cos + i Sin} .

Examples

  1. CIS(45) = 0.5253219888177297+i 0.8509035245341184
  2. CIS(180) = -0.5984600690578581-i-0.8011526357338304
  3. CIS(90.53) = -0.838546204483341+ⅈ0.5448304901036493


See Also


References

Complex Exponential