Difference between revisions of "Manuals/calci/TETRATE"

From ZCubes Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
*The notation <math>^n a</math>  means <math> a^a^\cdots^a</math> the application of exponentiation <math> n-1</math> times.
 
*The notation <math>^n a</math>  means <math> a^a^\cdots^a</math> the application of exponentiation <math> n-1</math> times.
 
*For any positive real a>0 and non-negative integer <math>n\ge 0</math> we define <math>^n a</math>by:
 
*For any positive real a>0 and non-negative integer <math>n\ge 0</math> we define <math>^n a</math>by:
<math>^n a</math> = \begin{cases}  
+
<math>^n a = \begin{cases}  
 
1,  & \mbox{if }n\mbox{=0} \\
 
1,  & \mbox{if }n\mbox{=0} \\
 
a^{[(n-1)a]}, & \mbox{if }n\mbox{ >0}  
 
a^{[(n-1)a]}, & \mbox{if }n\mbox{ >0}  
 
\end{cases}</math>
 
\end{cases}</math>

Revision as of 13:14, 1 June 2017

TETRATE(a,n)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} is the base value.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is power value.

Description

  • This function shows the tetration value of the given number.
  • In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle TETRATE(a,n)} ,Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} is the base value and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is the power value.
  • The hyperoperation after exponentiation is Tetration.
  • Tetration is called iterated exponentiation.
  • The notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ^n a} means Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^a^\cdots^a} the application of exponentiation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n-1} times.
  • For any positive real a>0 and non-negative integer Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\ge 0} we define Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ^n a} by:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ^n a = \begin{cases} 1, & \mbox{if }n\mbox{=0} \\ a^{[(n-1)a]}, & \mbox{if }n\mbox{ >0} \end{cases}}