Difference between revisions of "Manuals/calci/MATRIX"
Jump to navigation
Jump to search
(Created page with "<div style="font-size:30px">'''MATRIX (TypeOfMatrix,DimensionsOfMatrix,SeedValuesToUse,IJFunction,PreParameter,IsItInternalCall)'''</div><br/> *<math>TypeOfMatrix</math> is th...") |
|||
Line 10: | Line 10: | ||
*So we can get a desired matrix with the given order. | *So we can get a desired matrix with the given order. | ||
*Some different types of Matrices are listed below: | *Some different types of Matrices are listed below: | ||
− | + | # ANTIDIAGONAL | |
− | + | # HADAMARD | |
− | + | # HANKEL | |
− | + | # POSITIVE | |
− | + | # NEGATIVE | |
− | + | # ZERO | |
− | + | # POSITIVE INTEGER | |
− | + | # NEGATIVE INTEGER | |
− | + | # INTEGER | |
− | + | # LOGICAL | |
− | + | # BINARY | |
− | + | # BOOLEAN | |
− | + | # RELATION | |
− | + | # (0,1) | |
− | + | # ARROWHEAD | |
− | + | # ANTI SYMMETRIC | |
− | + | # SKEW SYMMETRIC | |
− | + | # BLOCK DIAGONAL | |
− | + | # CENTRO SYMMETRIC | |
− | + | # CONFERENCE | |
− | + | # CIRCULANT | |
− | + | # DIAGONAL | |
− | + | # FROBENIUS | |
− | + | # HERMITIAN | |
− | + | # HESSENBERG | |
− | + | # HILBERT | |
− | + | # HOLLOW INTEGER | |
− | + | # HOLLOW NEGZEROPOS | |
− | + | # HOLLOW NEGATIVE | |
− | + | # IDENTITY | |
− | + | # EXCHANGE | |
− | + | # LEHMER | |
− | + | # MONOMIAL | |
− | + | # GENERALIZED PERMUTATION | |
− | + | # METZLER | |
− | + | # METZLER NEGZEROPOS | |
− | + | # MOORE | |
− | + | # ALTERNANT | |
− | + | # ONES | |
− | + | # REDHEFFER | |
− | + | # PASCAL | |
− | + | # PERMUTATION | |
− | + | # PERSYMMETRIC | |
− | + | # PERSYMMETRIC INTEGER | |
− | + | # PERSYMMETRIC BOOLEAN | |
− | + | # SHIFT | |
− | + | # SIGNATURE | |
− | + | # SYMMETRIC | |
− | + | # SYMMETRIC BOOLEAN | |
− | + | # SYMMETRIC INTEGER | |
− | + | # TOEPLITZ | |
− | + | # TRIANGULAR | |
− | + | # UPPER TRIANGULAR | |
− | + | # LOWER TRIANGULAR | |
− | + | # CAUCHY | |
− | + | # CIRCULANT INTEGER | |
− | + | # SIGN | |
− | + | # UPPER BIDIAGONAL | |
− | + | # LOWER BIDIAGONAL | |
− | + | # BIDIAGONAL | |
− | + | # PENTA DIAGONAL | |
− | + | # PENTA DIAGONAL NEGATIVE | |
− | + | # TRIDIAGONAL | |
− | + | # IDEMPOTENT | |
− | + | # VANDERMONDE | |
==Examples== | ==Examples== |
Revision as of 14:48, 7 June 2017
MATRIX (TypeOfMatrix,DimensionsOfMatrix,SeedValuesToUse,IJFunction,PreParameter,IsItInternalCall)
- is the type of the matrix.
- is the order of the matrix.
- is the range of the values to display in matrix.
Description
- This function used to give different types matrix of given order.
- Matrix is an Array of numbers which arranged in rows and columns.
- There are many types of matrices.
- So we can get a desired matrix with the given order.
- Some different types of Matrices are listed below:
- ANTIDIAGONAL
- HADAMARD
- HANKEL
- POSITIVE
- NEGATIVE
- ZERO
- POSITIVE INTEGER
- NEGATIVE INTEGER
- INTEGER
- LOGICAL
- BINARY
- BOOLEAN
- RELATION
- (0,1)
- ARROWHEAD
- ANTI SYMMETRIC
- SKEW SYMMETRIC
- BLOCK DIAGONAL
- CENTRO SYMMETRIC
- CONFERENCE
- CIRCULANT
- DIAGONAL
- FROBENIUS
- HERMITIAN
- HESSENBERG
- HILBERT
- HOLLOW INTEGER
- HOLLOW NEGZEROPOS
- HOLLOW NEGATIVE
- IDENTITY
- EXCHANGE
- LEHMER
- MONOMIAL
- GENERALIZED PERMUTATION
- METZLER
- METZLER NEGZEROPOS
- MOORE
- ALTERNANT
- ONES
- REDHEFFER
- PASCAL
- PERMUTATION
- PERSYMMETRIC
- PERSYMMETRIC INTEGER
- PERSYMMETRIC BOOLEAN
- SHIFT
- SIGNATURE
- SYMMETRIC
- SYMMETRIC BOOLEAN
- SYMMETRIC INTEGER
- TOEPLITZ
- TRIANGULAR
- UPPER TRIANGULAR
- LOWER TRIANGULAR
- CAUCHY
- CIRCULANT INTEGER
- SIGN
- UPPER BIDIAGONAL
- LOWER BIDIAGONAL
- BIDIAGONAL
- PENTA DIAGONAL
- PENTA DIAGONAL NEGATIVE
- TRIDIAGONAL
- IDEMPOTENT
- VANDERMONDE
Examples
1. MATRIX("UPPERTRIANGULAR",3)
-37 | 82 | -52 |
0 | -31 | 2 |
0 | 0 | 13 |