Manuals/calci/COMBINATIONS
Jump to navigation
Jump to search
COMBINATIONS (Array,HowMany)
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Array } is the set of numbers.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle HowMany} is the number of choices.
Description
- This function shows the combination of the given numbers.
- A combination is a selection of all or part of a set of objects, without regard to the order in which objects are selected.
- In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle COMBINATIONS (Array,HowMany)} ,Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Array} is the set of numbers and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Howmany} is the described number of choice.
- The number of ways of picking k unordered outcomes from n possibilities.
- Also known as the binomial coefficient or choice number and read "n choose k," Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \binom{n}{k}= \binom{n-1}{k-1} +\binom{n-1}{k}} nck= Formula.
- Here COMBINATIONS shows the choices of the selected objects.