Manuals/calci/LEVENESTESTOLD

From ZCubes Wiki
Revision as of 14:20, 14 December 2016 by Devika (talk | contribs)
Jump to navigation Jump to search
LEVENESTESTOLD(xRange,ConfidenceLevel,NewTableFlag)


  • is the set of values for the test.
  • is the value from 0 to 1.
  • is either TRUE or FALSE. TRUE for getting results in a new cube. FALSE will display results in the same cube.

Description

  • This function used to test the Homogeneity of variances.
  • Levene's test is used to test the Samples have equal variances.
  • Equal variances across samples is called homogeneity of variance or homoscedasticity.
  • To do the Levenes test we need the following assumptions:
  1.The Samples from the populations are independent of one another. 
  2. The population under consideration are Normally Distributed. 
  • For three or more variables the following statistical tests for homogeneity of variances are commonly used:
   1.Levene's Test.
   2.Bartlett Test.
  • Levene's test is an alternative to the Bartlett test.
  • If the data surely is of normally distributed or nearly to normally distributed then we can use the Bartlett test.
  • The Levene's test is defined as
.
=Not all of the variances are equal. 
  • Normally there are three versions of the Levenes test.
  • There are
  • 1.Use of Mean.
  • 2.Use of Median.
  • 3.Use of 10% of Trimmed Mean.
  • The Levene test statistic is:

.

    • where is the result of the test.
    • is the number of different groups to which the sampled cases belong.
    • is the total number of cases in all groups.
    • is the number of cases in the group.
    • case from the group.
  • Zij is satisfying the one of the following conditions:
  • 1.,Where is the Mean of the subgroup.
  • 2.Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z_{ij}=|y_{ij}-\bar{y_i}|} ,Where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bar{y_i}} is the Median of the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i^{th}} subgroup
  • 3.Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z_{ij}=|y_{ij}-\bar{y_i}|} ,Where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bar{y_i}} is the 10%Trimmed Mean of the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i^{th}} subgroup.
  • Levene's Testing Procedure:
  • 1. checking the assumptions.
  • 2.State the Null(H0) and alternative(H1) hypothesis.
  • 3.Decide on the Significance level (α).
  • 4.Finding the Critical value and Rejection Region.Here Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle df_1=t-1} ,Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle df_2=N-t} .
  • 5.Compute the Levenes statistic using the formula.
  • 6.Then decision of the value of the test statistic,W is falls in the rejection region or if p-value ≤ α, then reject Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_0} .Otherwise, fail to reject Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_0} . For the computation p-value we have to use the value of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle df_1} and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle df_{2}} .
  • 7. Finally we have to conclude that the rejection of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_0} or fail to rejection Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_0} according to the test statistic at the significance level.