Manuals/calci/RANDOMNUMBERGENERATION
RANDOMNUMBERGENERATION(Number, RandomNumber, "uniform", NewTableFlag, MinNum, MaxNum)
RANDOMNUMBERGENERATION(Number, RandomNumber, "normal", NewTableFlag, Mean, StandardDeviation)
RANDOMNUMBERGENERATION(Number, RandomNumber, "binomial", NewTableFlag, ProbabilityValue,Trials)
RANDOMNUMBERGENERATION(Number, RandomNumber, Distribution(bernoulli), NewTableFlag, ProbabilityValue)
RANDOMNUMBERGENERATION(Number, RandomNumber, Distribution(patterned), NewTableFlag, FromNum, ToNum, StepSize, NumRep)
RANDOMNUMBERGENERATION(Number, RandomNumber, Distribution(discrete), NewTableFlag, Value, Probability)
where,
Number - represents the number of variables.
RandomNumber - represents the number of random number
Distribution - represents the distribution method(i.e uniform, normal, binomial, bernoulli, patterned, discrete) to create random values.
NewTableFlag - is the TRUE or FALSE.If set as TRUE,the result in new sheet. If NewTableFlag is omitted, it assumed to be FALSE.
MinNum - represents the lower bound.
MaxNum - represents the upper bound.
Mean - represents the Mean.
StandardDeviation - represents the standard deviation.
ProbabilityValue - represents the probability value and should be in range 0 to 1.
Trails - represents the number of trials.
ProbabilityValue - represents the probability value and should be in range 0 to 1.
FromNum - represents the start number.
ToNum - represents the end number.
StepSize - represents the repeating the number.
NumRep - represents the repeating the sequence.
In Uniform Distribution, elements has an equal probability of being chosen at each draw.
Normal Distribution characterized by a mean and a standard deviation.
In Binomial Distribution, the frequency distribution of the probability of a specified number of successes is an arbitrary number of repeated independent Bernoulli trials.
A theoretical distribution of the number of successes in a finite set of independent trials with a constant probability of success is called bernoulli distribution.A theoretical distribution of the number of successes.
A patterned distribution is a distribution of random occurrences in which one occurrence has repeating number and sequence in between start and end number.
A discrete distribution is a distribution of a random variable that takes only finite set of values.
Lets see an example in (Column1Row1)
=RANDOMNUMBERGENERATION(3, 4, "Uniform", TRUE, 3, 4)
RANDOMNUMBERGENERATION returns the result in new sheet(5Space).
=RANDOMNUMBERGENERATION(3, 4, "Bernoulli", TRUE, 0.5)
RANDOMNUMBERGENERATION returns the result in new sheet(9Space).
=RANDOMNUMBERGENERATION(3, 4, "Binomial", TRUE, 0.75, 5)
RANDOMNUMBERGENERATION returns the result in new sheet(14Space).
=RANDOMNUMBERGENERATION(3, 4, "Normal", TRUE, 0, 4)
RANDOMNUMBERGENERATION returns the result in new sheet(13Space).
=RANDOMNUMBERGENERATION(3, 4, "discrete", TRUE,[4,5,6,3,2,1],[0.2,0.1,0.3,0.2,0.1,0.1])
RANDOMNUMBERGENERATION returns the result in new sheet(15Space).
=RANDOMNUMBERGENERATION(3, 4, "Patterned", TRUE,1, 5, 3, 4 )
RANDOMNUMBERGENERATION returns the result in new sheet(16Space).
=RANDOMNUMBERGENERATION(-3, 4, "Uniform", TRUE, 3, 4)
RANKANDPERCENTILE returns the #ERROR(Number < 0).
RANDOM NUMBER GENERATION
If Number < 0 or RandomNumber < 0, RANDOMNUMBERGENERATION returns the #ERROR.
RANDOMNUMBERGENERATION returns the #ERROR, if ProbabilityValue < 0 or ProbabilityValue > 1, Trails < 0, Probability< 0 or Probability >1,StepSize < 0 or NumRep < 0.
Column1 | Column2 | Column3 | Column4 | |
Row1 | 5Space | 16Space | ||
Row2 | 9Space | |||
Row3 | ||||
Row4 | 13Space | 15Space | ||
Row5 | ||||
Row6 | 14Space |
File:Calci1.gif | $ |
3.0065124671093137 | 3.677568717214598 | 3.4744283915732352 |
3.163743257588417 | 3.6853662386924406 | 3.0128586791349416 |
3.4533329456853092 | 3.0895808098399992 | 3.1303954347733547 |
3.55900044450085 | 3.0393674387757006 | 3.0808581511315527 |
0 | 1 | 1 |
1 | 1 | 0 |
1 | 0 | 1 |
0 | 1 | 0 |
7.3992591238306735 | -6.403583675547587 | 5.264094078919947 |
1.1468478642534703 | 1.6270109725799506 | -5.689357936346091 |
-4.82901237541827 | -4.166206583582642 | -4.860569757430193 |
2.9239233886923936 | -5.044394778185275 | 2.9528738508087664 |
5 | 4 | 4 |
5 | 4 | 4 |
4 | 5 | 5 |
4 | 5 | 4 |
1 | 4 | 6 |
1 | 1 | 3 |
5 | 3 | 2 |
1 | 6 | 3 |
1 | 1 | 1 |
1 | 1 | 1 |
1 | 1 | 1 |
1 | 1 | 1 |
4 | 4 | 4 |
4 | 4 | 4 |
4 | 4 | 4 |
4 | 4 | 4 |
5 | 5 | 5 |
5 | 5 | 5 |
5 | 5 | 5 |
5 | 5 | 5 |