MATRIX("TOEPLITZ",order)
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle order}
is the size of the Toeplitz matrix.
Description
- This function gives the matrix of order 3 with the property of toeplitz matrix.
- A Toeplitz matrix is a matrix with the constant values along negative sloping diagonals(descending diagonal from left to right).
- If the i,j element of A is denoted Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_{i,j}}
, then we have
.
- Any nxn matrix A of the form:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} a_{0} & a_{-1} & a_{-2} & \ldots & \ldots &a_{-n+1} \\ a_{1} & a_0 & a_{-1} & \cdots & \ddots & \vdots \\ a_{2} & a_{1} & \cdots& \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2}\\ \vdots & & \ddots & a_{1} & a_{0}& a_{-1} \\ a_{n-1} & \ldots & \ldots & a_{2} & a_{1} & a_{0} \end{bmatrix} }
- The property of Toeplitz matrix is :Toeplitz matrices are persymmetric.
- Symmetric Toeplitz matrices are both centrosymmetric and bisymmetric.
- Toeplitz matrices commute asymptotically.
Examples
| 0.5852752963546664 |
0.5083035423886031 |
0.8240970941260457
|
| 0.5852752963546664 |
0.5852752963546664 |
0.5083035423886031
|
| 0.5083035423886031 |
0.5852752963546664 |
0.585275296354666
|
- MATRIX("toeplitz",5,1..7)
| 1 |
2 |
3 |
4 |
5
|
| 6 |
1 |
2 |
3 |
4
|
| 7 |
6 |
1 |
2 |
3
|
| 1 |
7 |
6 |
1 |
2
|
| 2 |
1 |
7 |
6 |
1
|
- MATRIX("toeplitz",4,761..770)
| 761 |
762 |
763 |
764
|
| 765 |
761 |
762 |
763
|
| 766 |
765 |
761 |
762
|
| 767 |
766 |
765 |
761
|
See Also
References