Manuals/calci/FIBONACCI
FIBONNACI (NumberUpto)
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NumberUpto } is the number to find the Series.
Description
- This function returns the Values of the Fibonnaci Series.
- In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle FIBONNACI (NumberUpto)} ,Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle NumberUpto} is any positive real number.
- The Fibonacci numbers are the sequence of numbers Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {F_{n}}_{(}n=1)^{i}nfty} defined by the linear recurrence equation
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_n=F_{(n-1)}+F_{(n-2)}} ,with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_1=F_2=1}
- The Fibonacci numbers for n=1, 2, ... are 1, 1, 2, 3, 5, 8, 13, 21, ...
- When the parameter 0,then the result as 0.
- When the parameter is in Decimal,then it is truncated in to integer.
- When the parameter is the negative number then it will truncated in to integer.
Examples
- FIBONACCI(5) = 0 1 1 2 3 5
- FIBONACCI(17) = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597
- FIBONACCI(8.5) = 0 1 1 2 3 5 8 13 21 34