Manuals/calci/MATRIXTENSORPRODUCT

From ZCubes Wiki
Jump to navigation Jump to search
MATRIXTENSORPRODUCT (a,b)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} are any two matrices.

Description

  • This function shows the Tensor product of the matrix.
  • In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle MATRIXTENSORPRODUCT (a,b)} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} are any two matrices.
  • Here matrices Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} should be square matrix with same order.
  • Tensor product is denoted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \otimes} .
  • Tensor product is different from general product.
  • The Tensor product is defined by the product two vector spaces V and W is itself a Vector space.
  • It is denoted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V\otimes W} .
  • The tensor product of V and W is the vector space generated by the symbols Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v\otimes w } , with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v \isin V} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w \isin W} .
  • The tensor product from the direct sum vector space, whose dimension is the sum of the dimensions of the two summands:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dim (V \otimes W)= dim V +dim W }

  • Now consider any 2x2 matrices:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix}}\otimes {\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}}={\begin{bmatrix}a_{11}{\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}}a_{12}{\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}}\\|-a_{21}{\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}}a_{22}{\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}}\end{bmatrix}}} = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12}\\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22}\\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12}\\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{bmatrix} }