Difference between revisions of "Manuals/calci/CSCH"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
− | <div style="font-size:30px">'''CSCH( | + | <div style="font-size:30px">'''CSCH(x)'''</div><br/> |
− | *Where | + | *Where x is any real number |
− | *It is read as COSECH( | + | *It is read as COSECH(x). |
+ | |||
==Description== | ==Description== | ||
− | *This function gives the Hyperbolic Cosecant of ' | + | *This function gives the Hyperbolic Cosecant of 'x'. |
*It's also called as Circular function. | *It's also called as Circular function. | ||
+ | *Let z is any real number. | ||
*Here <math>CSCH(z)= (sinh(z))^{-1}</math> ie, <math>\frac{2}{e^z-e^{-z}}</math> or <math>icsc(iz)</math>, where <math>i</math> is the imaginary unit and <math>i=\sqrt{-1}</math> | *Here <math>CSCH(z)= (sinh(z))^{-1}</math> ie, <math>\frac{2}{e^z-e^{-z}}</math> or <math>icsc(iz)</math>, where <math>i</math> is the imaginary unit and <math>i=\sqrt{-1}</math> | ||
*The relation between Hyperbolic & Trigonometric function is <math>Csc(iz) = -iCsch(z)</math> & <math>Csch(iz)=-iCsc(z)</math> | *The relation between Hyperbolic & Trigonometric function is <math>Csc(iz) = -iCsch(z)</math> & <math>Csch(iz)=-iCsc(z)</math> | ||
Line 11: | Line 13: | ||
== Examples == | == Examples == | ||
− | '''CSCH( | + | '''CSCH(x)''' |
− | *''' | + | *'''x''' is any real number. |
{|id="TABLE1" class="SpreadSheet blue" | {|id="TABLE1" class="SpreadSheet blue" | ||
|- class="even" | |- class="even" | ||
− | |'''CSCH( | + | |'''CSCH(x)''' |
|'''Value''' | |'''Value''' | ||
Latest revision as of 17:34, 18 June 2018
CSCH(x)
- Where x is any real number
- It is read as COSECH(x).
Description
- This function gives the Hyperbolic Cosecant of 'x'.
- It's also called as Circular function.
- Let z is any real number.
- Here ie, or , where is the imaginary unit and
- The relation between Hyperbolic & Trigonometric function is &
- CSCH(-z)=-CSCH(z)
Examples
CSCH(x)
- x is any real number.
CSCH(x) | Value |
CSCH(0) | Infinity |
CSCH(7) | 0.00182376 |
CSCH(-2) | 0.27572056 |
Related Videos
See Also
References