# Difference between revisions of "Manuals/calci/GAMMAFUNCTION"

Jump to navigation
Jump to search

Line 10: | Line 10: | ||

*For complex numbers with a positive real part, it is defined via a convergent improper integral: | *For complex numbers with a positive real part, it is defined via a convergent improper integral: | ||

<math>\Gamma (z) = \int\limits_{0}^{\infty} x^{z-1} e^{-x} dx </math> | <math>\Gamma (z) = \int\limits_{0}^{\infty} x^{z-1} e^{-x} dx </math> | ||

+ | *This function will return the result as NaN when the given number as negative or Non numeric. | ||

+ | |||

+ | |||

+ | ==Examples== | ||

+ | #GAMMAFUNCTION(2) = 1.0000026676984093 | ||

+ | #GAMMAFUNCTION(45.3) = 8.308990531109891e+54 | ||

+ | #GAMMAFUNCTION(-3) = NaN | ||

+ | |||

+ | ==See Also== | ||

+ | *[[Manuals/calci/SUM | SUM]] | ||

+ | *[[Manuals/calci/AVERAGE | AVERAGE ]] | ||

+ | *[[Manuals/calci/AVERAGEA | AVERAGEA ]] |

## Revision as of 15:16, 28 November 2016

**GAMMAFUNCTION (z)**

- is any positive real number.

## Description

- This function gives the value of the Gamma function.
- The Gamma function is defined to be an extension of the factorial to complex and real number arguments.
- That is, if n is a positive integer:

- Gamma function is defined for all complex numbers except the non-positive integers.
- For complex numbers with a positive real part, it is defined via a convergent improper integral:

- This function will return the result as NaN when the given number as negative or Non numeric.

## Examples

- GAMMAFUNCTION(2) = 1.0000026676984093
- GAMMAFUNCTION(45.3) = 8.308990531109891e+54
- GAMMAFUNCTION(-3) = NaN