Difference between revisions of "Manuals/calci/ATAN2"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 +
<div style="font-size:30px">'''ATAN2'''</div><br/>
 +
* where 'iz' is the complex number
 +
==Description==
  
<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
*This function gives the cos value of 'iz'.
 +
*Where iz is the complex number in the form of <math>x+iy</math>
 +
*x & y are the real number
 +
*'i' is the imaginary unit <math>i=\sqrt{-1}</math>
 +
*Also x is  called the real part & y is the imaginary patr of a complex number.
 +
*'COMPLEX' is the function used to convert Real & Imaginary numbers in to a complex number.
 +
*<math>cos(x+iy)</math> is defined by <math>cos(x+iy)=cos(x)cosh(y)-isin(x)sinh(y)</math>
  
Syntax
+
== Examples ==
 +
'''IMCOS(iz)'''
 +
*'''iz''' is the complex number.
  
</div></div>
+
{|id="TABLE1" class="SpreadSheet blue"
----
 
<div id="4SpaceContent" align="left"><div class="ZEditBox" align="justify">
 
  
Remarks
+
|- class="even"
 +
|'''IMCOS(iz)'''
 +
|'''Value(Radian)'''
  
</div></div>
+
|- class="odd"
----
+
| IMCOS("2+3i")
<div id="2SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
| -4.189-i9.109
  
Examples
+
|- class="even"
 +
| IMCOS("2-3i")
 +
| 4.189-i9.109
  
</div></div>
+
|- class="odd"
----
+
| IMCOS("2")
<div id="8SpaceContent" align="left"><div class="ZEditBox" align="justify">'''<font face="Times New Roman">''''''''''''<font size="6"> </font>''' '''''''''</font>'''</div></div>
+
| 0.4161468
----
+
|}
<div id="11SpaceContent" align="left"><div class="ZEditBox mceEditable" align="justify">
 
 
 
<font size="5">Description</font>
 
 
 
</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">'''<font face="Times New Roman"> <font size="6">ATAN2</font> </font>'''</div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><br /><div id="7Space" class="gamizbox" title="7Space"><div id="7SpaceHeader" class="zheaderstyle" title="Double-click to start and stop editing the header."><center></center></div><div id="7SpaceRollup" title="Double-click to rolldown" align="left"><span><span id="7SpaceRollupContent" align="center"></span></span></div><div id="7SpaceCover"><div id="7SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">
 
 
 
<font size="3"><font face="Times New Roman">ATAN2 (xn, yn).</font></font>
 
 
 
<font size="3"><font face="Times New Roman">Where xn is the x-coordinate and yn is the y-coordinate of that particular point.</font></font>
 
 
 
</div></div>
 
----
 
<div id="13SpaceContent" class="zcontent" align="left"><br /><br /><div id="1Space" class="gamizbox" title="1Space"><div id="1SpaceHeader" class="zheaderstyle" title="Double-click to start and stop editing the header."><center></center></div><div id="1SpaceRollup" title="Double-click to rolldown" align="left"><span><span id="1SpaceRollupContent" align="center"></span></span></div><div id="1SpaceCover"><div id="1SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">
 
 
 
<font size="3">·</font>        <font size="3"><font face="Times New Roman">ATAN2 returns the error value when both xn and yn are 0. </font></font>
 
  
<font size="3">·</font>        <font size="3"><font face="Times New Roman">If you want to convert the arctangent in degrees, multiply the result by 180/PI. </font></font>
+
==See Also==
  
</div></div>
+
*[[Manuals/calci/COS| COS]]
----
 
<div id="14SpaceContent" class="zcontent" align="left"><br /><br /><br /><div id="5Space" class="gamizbox" title="5Space"><div id="5SpaceHeader" class="zheaderstyle" title="Double-click to start and stop editing the header."><center></center></div><div id="5SpaceRollup" title="Double-click to rolldown" align="left"><span><span id="5SpaceRollupContent" align="center"></span></span></div><div id="5SpaceCover"><div id="5SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">
 
  
<font size="3"><font face="Times New Roman">Calci returns the arctangent of the particular x- and y-coordinates. It is the angle from the x-axis to a line with origin (0, 0) and with coordinates (xn, yn). </font></font>
+
*[[Manuals/calci/COMPLEX| COMPLEX]]
  
</div></div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><br /><br /><br /></div></div>
 
----
 
<div id="6SpaceContent" class="zcontent" align="left">
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="  " |
 
<div id="6Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class=" " | -1
 
| class="sshl_f " | 1
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | -0.7854
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_fSelectTD SelectTD " |
 
<div id="6Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="6Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
==References==
----
 
<div id="15SpaceContent" class="zcontent" align="left"> 
 
  
Lets see an example in (Column1, Row 1 and Column 2, Row1)
+
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions]
 +
*[http://en.wikipedia.org/wiki/Hyperbolic_function  Hyperbolic Function]
  
ATAN2 (A, B)
 
  
ATANH (C1R1, C2R1)''''''
 
  
That is ATAN2 (-1, 1) is -0.7854
 
  
</div></div>
+
Where xn is the x-coordinate and yn is the y-coordinate of that particular point
----
+
ATAN2 returns the error value when both xn and yn are 0. </font></font>
</div></div></div></div></div></div></div>
+
If you want to convert the arctangent in degrees, multiply the result by 180/PI.
 +
Calci returns the arctangent of the particular x- and y-coordinates. It is the angle from the x-axis to a line with origin (0, 0) and with coordinates (xn, yn).

Revision as of 03:08, 6 November 2013

ATAN2


  • where 'iz' is the complex number

Description

  • This function gives the cos value of 'iz'.
  • Where iz is the complex number in the form of
  • x & y are the real number
  • 'i' is the imaginary unit
  • Also x is called the real part & y is the imaginary patr of a complex number.
  • 'COMPLEX' is the function used to convert Real & Imaginary numbers in to a complex number.
  • is defined by

Examples

IMCOS(iz)

  • iz is the complex number.
IMCOS(iz) Value(Radian)
IMCOS("2+3i") -4.189-i9.109
IMCOS("2-3i") 4.189-i9.109
IMCOS("2") 0.4161468

See Also


References



Where xn is the x-coordinate and yn is the y-coordinate of that particular point ATAN2 returns the error value when both xn and yn are 0. If you want to convert the arctangent in degrees, multiply the result by 180/PI. Calci returns the arctangent of the particular x- and y-coordinates. It is the angle from the x-axis to a line with origin (0, 0) and with coordinates (xn, yn).