Difference between revisions of "Manuals/calci/CSCH"

From ZCubes Wiki
Jump to navigation Jump to search
Line 6: Line 6:
 
*This function gives the Hyperbolic Cosecant of 'z'.
 
*This function gives the Hyperbolic Cosecant of 'z'.
 
*It's also called as Circular function.
 
*It's also called as Circular function.
*Here <math>CSCH= (sinh(z))^{-1}</math> ie, <math>\frac{2}{e^z-e^{-z}}</math> or <math>icsc(iz)</math>, where <math>i</math> is the imaginary unit and <math>i=\sqrt{-1}</math>
+
*Here <math>CSCH(z)= (sinh(z))^{-1}</math> ie, <math>\frac{2}{e^z-e^{-z}}</math> or <math>icsc(iz)</math>, where <math>i</math> is the imaginary unit and <math>i=\sqrt{-1}</math>
 
*The relation between Hyperbolic & Trigonometric function is <math>Csc(iz) = -iCsch(z)</math> & <math>Csch(iz)=-iCsc(z)</math>
 
*The relation between Hyperbolic & Trigonometric function is <math>Csc(iz) = -iCsch(z)</math> & <math>Csch(iz)=-iCsc(z)</math>
 
*CSCH(-z)=-CSCH(z)
 
*CSCH(-z)=-CSCH(z)

Revision as of 00:30, 7 November 2013

CSCH(z)


  • Where z is any real number
  • It is read as COSECH(z)

Description

  • This function gives the Hyperbolic Cosecant of 'z'.
  • It's also called as Circular function.
  • Here ie, or , where is the imaginary unit and
  • The relation between Hyperbolic & Trigonometric function is &
  • CSCH(-z)=-CSCH(z)

Examples

CSCH(z)

  • z is any real number.
CSCH(z) Value(Radian)
CSCH(0) Infinity
CSCH(7) 0.00182376
CSCH(-2) 0.27572056

See Also

References