Difference between revisions of "Manuals/calci/COT"

From ZCubes Wiki
Jump to navigation Jump to search
 
(32 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''COT(x)'''</div><br/>
+
=Demo Study Page=
* where '''x''' is in Radians
 
* by default Calci use Radian as angle
 
  
[[Manuals/calci/DTAN | DTAN]] can be used if the angle is in degrees.  
+
* Where x is the number and it is varying from -1 to 1.
 +
* The value of ASIN(x) is in radians in the range -pi()/2 to pi()/2.
 +
* Calci returns the value of arcsine (inverse sine)is in Radians.
 +
*The number can be a single value or any number of values.
  
The angle can be a single value or any complex array of values.
+
For example, ASIN(0.5,(-0.2),1) gives the arcsine or inversesine values for each element.
  
For example TAN(1..100) can give an array of the results, which is the TAN value for each of the elements in the array. The array could be of any shape.
+
== Description ==
  
==Description==
+
Consider x = (-0.8) then, ASIN((-0.8))'' is -0.9273
Consider &nbsp;&nbsp;&nbsp; '''x = 90'''&nbsp;&nbsp;&nbsp;  then &nbsp;&nbsp;&nbsp;  '''=TAN(RADIANS(90))'''&nbsp;&nbsp;&nbsp; gives &nbsp;&nbsp;&nbsp;'''1''' <br/>
+
*This function is the Inverse function of Sin in trigonometry.
*This function gives the tangent of 'x'.
+
*It's also called as Cyclometric function.
*In a right angled triangle, '''TAN = Opposite / Adjacent''' or '''SIN / COS'''.<br/>
+
*ASIN is described as Arcsin of a given number and denoted by <math>sin^{-1}</math>(x).
*By default, Calci takes the angle in Radians.
+
*In  ASIN(x) ,x value should be with in -1 & 1.
*To convert Radian to Degree, multiply with 180/PI() or we have to use the Radians function like TAN(RADIANS(x))
+
*To find the angle in degrees, multiply the result angle with 180/PI().
 +
*DEGREES function can also be used.
  
The following example shows how TAN is applied to an array of numbers containing numbers 1..10.
+
For example ASIN(-0.8)*180/PI() or DEGREES(ASIN(-0.8))'' gives -53.13010235415598
 
 
1..10@TAN
 
 
 
{| class="wikitable"
 
|-
 
! Number !! TAN
 
|-
 
| 1 || 1.55740772465
 
|-
 
| 2 || -2.18503986326
 
|-
 
| 3 || -0.14254654307
 
|-
 
| 4 || 1.15782128235
 
|-
 
| 5 ||-3.38051500625
 
|-
 
| 6 || -0.29100619138
 
|-
 
| 7 || 0.87144798272
 
|-
 
| 8 || -6.79971145522
 
|-
 
| 9 || -0.45231565944
 
|-
 
| 10 || 0.64836082745
 
|}
 
  
 
== Examples ==
 
== Examples ==
'''TAN(x)'''
+
'''ASIN(x)'''
*'''x  ''' is the angle in radians.
+
*'''''' is the Number.
 
+
{| id="TABLE3" class="SpreadSheet blue"
{|id="TABLE1" class="SpreadSheet blue"
 
 
 
 
|- class="even"
 
|- class="even"
|'''TAN(Radian)'''
+
|'''ASIN(number)'''
|'''Value'''
+
|'''Angle(Radian)  '''  
 
 
 
|- class="odd"
 
|- class="odd"
| TAN(0)
+
| class="sshl_f " | ASIN(-0.8)
| 0
+
| class="sshl_f" | -0.9273
  
 
|- class="even"
 
|- class="even"
| TAN(1)
+
| class="sshl_f" | ASIN(1)
| 1.55740772465
+
| class="ssh1_f" | 1.5707963267948965
  
 
|- class="odd"
 
|- class="odd"
|TAN(90)
+
| class="sshl_f " | ASIN(0.559)
| -1.99520041221
+
| class="sshl_f" | 0.5931792803038736
  
 
|}
 
|}
  
  
==See Also==
+
{| id="TABLE3" class="SpreadSheet blue"
 +
|- class="even"
 +
| Complex(RN,IN,SF)
 +
! RN
 +
! IN
 +
! SF
 +
! RESULT
 +
|-
 +
|- class="odd"
 +
|Complex(5,6)
 +
|5
 +
|6
 +
|
 +
|5+6i
 +
|- class="even"
 +
|Complex(5,2,"j")
 +
|5
 +
|2
 +
|j
 +
|5+6j
 +
|- class="odd"
 +
| Complex(2,0,"i")
 +
|2                                     
 +
|0
 +
|i
 +
|2
 +
|- class="even"
 +
| Complex(0,-4,i)
 +
|0
 +
|4
 +
|i
 +
|4i
 +
|- class="odd"
 +
|Complex(5,"j")
 +
|5
 +
|
 +
|j
 +
|Error
 +
|}
  
*[[Manuals/calci/DTAN | DTAN]]
+
{|id="TABLE3" class="SpreadSheet blue"
 
+
!width="50"|Name
*[[Manuals/calci/ATAN | ATAN]]
+
!width="225"|Effect
 
+
!width="225"|Games Found In
==References==
+
|-
 +
|Poké Ball || Regular Poké Ball || All Versions
 +
|-
 +
|Great Ball || Better than a Poké Ball || All Versions
 +
|}
  
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions]
+
<math>\tilde{} </math>
*[http://en.wikipedia.org/wiki/Sine TAN]
 

Latest revision as of 05:34, 11 November 2013

Demo Study Page

  • Where x is the number and it is varying from -1 to 1.
  • The value of ASIN(x) is in radians in the range -pi()/2 to pi()/2.
  • Calci returns the value of arcsine (inverse sine)is in Radians.
  • The number can be a single value or any number of values.

For example, ASIN(0.5,(-0.2),1) gives the arcsine or inversesine values for each element.

Description

Consider x = (-0.8) then, ASIN((-0.8)) is -0.9273

  • This function is the Inverse function of Sin in trigonometry.
  • It's also called as Cyclometric function.
  • ASIN is described as Arcsin of a given number and denoted by (x).
  • In ASIN(x) ,x value should be with in -1 & 1.
  • To find the angle in degrees, multiply the result angle with 180/PI().
  • DEGREES function can also be used.

For example ASIN(-0.8)*180/PI() or DEGREES(ASIN(-0.8)) gives -53.13010235415598

Examples

ASIN(x)

  • x is the Number.
ASIN(number) Angle(Radian)
ASIN(-0.8) -0.9273
ASIN(1) 1.5707963267948965
ASIN(0.559) 0.5931792803038736


Complex(RN,IN,SF) RN IN SF RESULT
Complex(5,6) 5 6 5+6i
Complex(5,2,"j") 5 2 j 5+6j
Complex(2,0,"i") 2 0 i 2
Complex(0,-4,i) 0 4 i 4i
Complex(5,"j") 5 j Error
Name Effect Games Found In
Poké Ball Regular Poké Ball All Versions
Great Ball Better than a Poké Ball All Versions