Difference between revisions of "Manuals/calci/BIN2DEC"

From ZCubes Wiki
Jump to navigation Jump to search
Line 18: Line 18:
 
*Binaray number is represented using digits 1 or 0 only. The number can also be entered in text format (e.g "101").
 
*Binaray number is represented using digits 1 or 0 only. The number can also be entered in text format (e.g "101").
  
*The conversion can be obtained for a binary number upto 10 bits. The most significant bit represents the 'sign' of the number (0=positive, 1=negative). Negative numbers are represented using 2's complement notation.
+
*The conversion can be obtained for a binary number upto 17 bits for positive numbers and 10 bits for negative numbers.
  
*Positive numbers can be from 0 (000000000) to 511 (0111111111) or negative numbers -1 (1111111111) to -512 (1000000000).
+
*The most significant bit represents the 'sign' of the number (0=positive, 1=negative). Negative numbers are represented using 2's complement notation.
 +
 
 +
*Positive numbers may be from 0 (000000000) to 130046 (11111111111111110) and negative numbers from -1 (1111111111) to -512 (1000000000).
  
 
*A number preceding with '0' (e.g 01111111111) should be written in text format ("01111111111") to avoid confusion with octal numbers.   
 
*A number preceding with '0' (e.g 01111111111) should be written in text format ("01111111111") to avoid confusion with octal numbers.   
  
*A binary number (e.g '101') can be converted to decimal number (base 2) as -
+
*A binary number (e.g '101') is converted to decimal number (base 2) as -
 
  (1*2^2)+(0*2^1)+(1*2^0)=4+0+1= ''5''
 
  (1*2^2)+(0*2^1)+(1*2^0)=4+0+1= ''5''
  
Line 56: Line 58:
  
 
|- class="odd"
 
|- class="odd"
| class="ssh1_f" | 1111111111
+
| class="ssh1_f" | 1010101010101010
 +
| class="sshl_f" | 42666
 +
 
 +
|- class="even"
 +
| class="ssh1_f" | 1111111111  
 
| class="sshl_f" | -1
 
| class="sshl_f" | -1
  
|- class="even"
+
|- class="odd"
| class="ssh1_f" | 1111000000  
+
| class="ssh1_f" | 1111000000
 
| class="sshl_f" | -64
 
| class="sshl_f" | -64
  
 +
|- class="even"
 +
| class="ssh1_f" | 1000000000
 +
| class="sshl_f" | -512
  
 
|}
 
|}

Revision as of 15:24, 13 November 2013

BIN2DEC(number)

  • Where 'number' is the binary number to be converted to decimal number.


Description

BIN2DEC(number)

For example, BIN2DEC(101) returns 5 as a result.

            BIN2DEC(11110) returns 30 as a result. 
  • BIN2DEC() converts a binary number to decimal number.
  • Binaray number is represented using digits 1 or 0 only. The number can also be entered in text format (e.g "101").
  • The conversion can be obtained for a binary number upto 17 bits for positive numbers and 10 bits for negative numbers.
  • The most significant bit represents the 'sign' of the number (0=positive, 1=negative). Negative numbers are represented using 2's complement notation.
  • Positive numbers may be from 0 (000000000) to 130046 (11111111111111110) and negative numbers from -1 (1111111111) to -512 (1000000000).
  • A number preceding with '0' (e.g 01111111111) should be written in text format ("01111111111") to avoid confusion with octal numbers.
  • A binary number (e.g '101') is converted to decimal number (base 2) as -
(1*2^2)+(0*2^1)+(1*2^0)=4+0+1= 5
  • If the number is not a valid number, 'Calci' returns an #ERROR message.
  • Below are few examples that show the use of combination of functions and get the result in decimal -

1)SUM(BIN2DEC(100) + BIN2DEC(101)) that displays the result as 9.

2)AVERAGE(BIN2DEC(100) + BIN2DEC(101))that displays the result as 4.5.

3)BIN2DEC(110)+BIN2DEC(101)-BIN2DEC(100) that displays the result as 7.


Examples

Binary Input Decimal Output
100 4
11110 30
1010101010101010 42666
1111111111 -1
1111000000 -64
1000000000 -512