Difference between revisions of "Manuals/calci/BIN2DEC"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
=BIN2DEC(number,padding)=
+
=BIN2DEC(number,places)=
  
<font color="red">padding argument to be included in upcoming version</font>
+
<font color="red">places argument to be included in upcoming version</font>
  
 
*Where 'number' is the binary number to be converted to decimal number.
 
*Where 'number' is the binary number to be converted to decimal number.
Line 83: Line 83:
 
*[[Manuals/calci/DEC2BIN| DEC2BIN]]
 
*[[Manuals/calci/DEC2BIN| DEC2BIN]]
  
*[[Manuals/calci/OCT2BIN | OCT2BIN]]
+
*[[Manuals/calci/OCT2BIN| OCT2BIN]]
 +
 
 +
*[[Manuals/calci/OCT2BIN| HEX2BIN]]
  
 
==References==
 
==References==
 
*[http://en.wikipedia.org/wiki/Binary_number#Conversion_to_and_from_other_numeral_systems Conversion of Binary Numbers]
 
*[http://en.wikipedia.org/wiki/Binary_number#Conversion_to_and_from_other_numeral_systems Conversion of Binary Numbers]

Revision as of 11:39, 16 November 2013

BIN2DEC(number,places)

places argument to be included in upcoming version

  • Where 'number' is the binary number to be converted to decimal number.
  • BIN2DEC() converts a binary number to a decimal number.

Description

BIN2DEC(number)

For example, BIN2DEC(101) returns 5 as a result.

            BIN2DEC(11110) returns 30 as a result. 
  • This function is used to convert a binary number to a decimal number.
  • Binaray number is represented using digits 1 or 0 only. The number can also be entered in text format (e.g "101").
  • The conversion can be obtained for a binary number upto 17 bits for positive numbers and 10 bits for negative numbers.
  • The most significant bit represents the 'sign' of the number (0=positive, 1=negative). Negative numbers are represented using 2's complement notation.
  • Positive numbers may be from 0 (000000000) to 130046 (11111111111111110) and negative numbers from -1 (1111111111) to -512 (1000000000).
  • A number preceding with '0' (e.g 01111111111) should be written in text format ("01111111111") to avoid confusion with octal numbers.
  • A binary number (e.g '101') is converted to decimal number (base 2) as -
(1*2^2)+(0*2^1)+(1*2^0)=4+0+1= 5
  • If the number is not a valid number, 'Calci' returns an #ERROR message.
  • Below are few examples that show the use of combination of functions and get the result in decimal -

1)SUM(BIN2DEC(100) + BIN2DEC(101)) that displays the result as 9.

2)AVERAGE(BIN2DEC(100) + BIN2DEC(101))that displays the result as 4.5.

3)BIN2DEC(110)+BIN2DEC(101)-BIN2DEC(100) that displays the result as 7.

Examples

Binary Input Decimal Output
100 4
11110 30
1010101010101010 42666
1111111111 -1
1111000000 -64
1000000000 -512

See Also

References