Difference between revisions of "Manuals/calci/BIN2DEC"

From ZCubes Wiki
Jump to navigation Jump to search
Line 73: Line 73:
 
| class="sshl_f" | -512
 
| class="sshl_f" | -512
  
 +
|}
 +
 +
===ZOS Examples===
 +
DEC2BIN(0..10)
 +
 +
{| class="wikitable"
 +
|-
 +
! number !! DEC2BIN
 +
|-
 +
| 0 || 0000000000
 +
|-
 +
| 1 || 0000000001
 +
|-
 +
| 2 || 0000000010
 +
|-
 +
| 3 || 0000000011
 +
|-
 +
| 4 || 0000000100
 +
|-
 +
| 5 || 0000000101
 +
|-
 +
| 6 || 0000000110
 +
|-
 +
| 7 || 0000000111
 +
|-
 +
| 8 || 0000001000
 +
|-
 +
| 9 || 0000001001
 +
|-
 +
| 10 || 0000001010
 
|}
 
|}
  

Revision as of 13:11, 18 November 2013

BIN2DEC(number,places)

places argument to be included in upcoming version

  • Where 'number' is the binary number to be converted to decimal number.

BIN2DEC() converts a binary number to a decimal number.

Description

BIN2DEC(number)

For example, BIN2DEC(101) returns 5 as a result.

            BIN2DEC(11110) returns 30 as a result. 
  • This function is used to convert a binary number to a decimal number.
  • Binary number is represented using digits 1 or 0 only. The number can also be entered in text format (e.g "101").
  • The conversion can be obtained for a binary number upto 17 bits for positive numbers and 10 bits for negative numbers.
  • The most significant bit represents the 'sign' of the number (0=positive, 1=negative). Negative numbers are represented using 2's complement notation.
  • Positive numbers may be from 0 (000000000) to 130046 (11111111111111110) and negative numbers from -1 (1111111111) to -512 (1000000000).
  • A number preceding with '0' (e.g 01111111111) should be written in text format ("01111111111") to avoid confusion with octal numbers.
  • A binary number (e.g '101') is converted to decimal number (base 2) as -
(1*2^2)+(0*2^1)+(1*2^0)=4+0+1= 5
  • If the number is not a valid number, 'Calci' returns an #ERROR message.

Below are few examples that show the use of combination of functions and get the result in decimal -

1)SUM(BIN2DEC(100) + BIN2DEC(101)) returns 9 as a result.

2)AVERAGE(BIN2DEC(100) + BIN2DEC(101)) returns 4.5 as a result.

3)BIN2DEC(110)+BIN2DEC(101)-BIN2DEC(100) returns 7 as a result.

Examples

Binary Input Decimal Output
100 4
11110 30
1010101010101010 42666
1111111111 -1
1111000000 -64
1000000000 -512

ZOS Examples

DEC2BIN(0..10)

number DEC2BIN
0 0000000000
1 0000000001
2 0000000010
3 0000000011
4 0000000100
5 0000000101
6 0000000110
7 0000000111
8 0000001000
9 0000001001
10 0000001010

See Also

References