Difference between revisions of "Manuals/calci/IMDIV"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...")
 
Line 1: Line 1:
<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
<div style="font-size:30px">'''IMDIV(z1,z2)'''</div><br/>
 +
*where 'z1' and 'z2' are complex numbers.
 +
==Description==
 +
*This function gives the division of two complex numbers.
 +
*This function used to remove the I (imaginary unit) from the denominator.
 +
*In IMDIV(z1,z2), where z1,z2 are the two complex numbers is in the form of z1=a+ib andz2=c+id, where a,b,c &d are real numbers i is the imaginary unit, i=sqrt(-1).
 +
*To do the division of complex number we have follow the steps:step1: we have to write the complex number is in the fraction form.
 +
*step 2: To find the conjugate of the denominator.
 +
*step 3:To mutiply the numerator and denominator with conjugate.
 +
i.e. IMDIV(z1,z2)=(a+ib)/(c+id)=((a+ib)/(c+id))*((c-id)/(c-id))
 +
                            =[(ac+bd)/(c^2+d^2)]+[(bc-ad)i/[(c^2+d^2)]
  
Syntax
+
==Examples==
 +
#IMEXP("2+3i")=-7.315110094901102+1.0427436562359i
 +
#IMEXP("4-5i")=15.4874305606508+52.355491418482i
 +
#IMEXP("6")=403.428793492735
 +
#IMEXP("2i")=-0.416146836547142+0.909297426825682i
 +
#IMEXP("0")=1 andIMEXP("0i")=1
  
</div></div>
+
==See Also==
----
+
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
<div id="4SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
*[[Manuals/calci/IMAGINARY  | IMAGINARY ]]
 +
*[[Manuals/calci/IMREAL  | IMREAL ]]
 +
*[[Manuals/calci/EXP  | EXP ]]
  
Remarks
+
==References==
 
+
[http://en.wikipedia.org/wiki/Exponential_function| Exponential function]
</div></div>
 
----
 
<div id="2SpaceContent" align="left"><div class="ZEditBox" align="justify">
 
 
 
Examples
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" align="left"><div class="ZEditBox" align="justify">'''<font face="Times New Roman">''''''''''''<font size="6"> </font>''' '''''''''</font>'''</div></div>
 
----
 
<div id="11SpaceContent" align="left"><div class="ZEditBox mceEditable" align="justify">
 
 
 
<font size="5">Description</font>
 
 
 
</div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">This function calculates the quotient of two complex numbers in 'a + bi' or 'a +bj' text format.</font></font></font>
 
 
 
</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"><font size="6">'''<font face="Arial">IMDIV</font>'''</font></div></div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">The quotient of two complex numbers is: </font></font></font>
 
 
 
<font color="#484848">IMDIV(z1,z2)=(a+bi)/(c-di)=[(ac-bd)+(bc-ad)i] / (c<sup>2</sup>-d<sup>2</sup>)</font>
 
 
 
</div></div>
 
----
 
<div id="6SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IMDIV'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IN1'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">,</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IN2'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where IN1 and IN2 are the</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2"> complex numerator or dividend and the complex denominator or divisor.</font></font></font>
 
 
 
</div></div>
 
----
 
<div id="9SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 12.533333333333333+-15.066666666666666i
 
| class="                          " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| class="  " | Row2
 
| class="f52543                                                                                                                                                                      " |
 
| class="  SelectTD" |
 
<div id="9Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="9Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class=" " |
 
| class=" " |
 
|- class="odd"
 
| Row3
 
| class="  " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| Row4
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="odd"
 
| class=" " | Row5
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| Row6
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">I.e.=IMDIV(“512+120i”,”12+24i”) is12.533+-15.067i</font></font></font>
 
 
 
</div>
 
----
 

Revision as of 03:44, 25 November 2013

IMDIV(z1,z2)


  • where 'z1' and 'z2' are complex numbers.

Description

  • This function gives the division of two complex numbers.
  • This function used to remove the I (imaginary unit) from the denominator.
  • In IMDIV(z1,z2), where z1,z2 are the two complex numbers is in the form of z1=a+ib andz2=c+id, where a,b,c &d are real numbers i is the imaginary unit, i=sqrt(-1).
  • To do the division of complex number we have follow the steps:step1: we have to write the complex number is in the fraction form.
  • step 2: To find the conjugate of the denominator.
  • step 3:To mutiply the numerator and denominator with conjugate.

i.e. IMDIV(z1,z2)=(a+ib)/(c+id)=((a+ib)/(c+id))*((c-id)/(c-id))

                            =[(ac+bd)/(c^2+d^2)]+[(bc-ad)i/[(c^2+d^2)]

Examples

  1. IMEXP("2+3i")=-7.315110094901102+1.0427436562359i
  2. IMEXP("4-5i")=15.4874305606508+52.355491418482i
  3. IMEXP("6")=403.428793492735
  4. IMEXP("2i")=-0.416146836547142+0.909297426825682i
  5. IMEXP("0")=1 andIMEXP("0i")=1

See Also

References

Exponential function