Difference between revisions of "Manuals/calci/LOG10"
Jump to navigation
Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="2SpaceContent" align="left"><div class="ZEditBox" align=...") |
|||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''LOG10(n)'''</div><br/> |
+ | *where 'n' is the positive real number. | ||
+ | ==Description== | ||
+ | *This function gives the logarithm value with the base 10. | ||
+ | *The logarithm of x to base b is the solution y to the equation.i.e b^y=x. | ||
+ | *For e.g The logarithm of 1000 to base 10 is 3.because 1000=10*10*10=10^3. | ||
+ | *The logarithm of base 10 is called common logarithm or decimal logarithm. | ||
+ | *It is denoted by log 10(x) or log(x). | ||
+ | *log10(x) is related to the number of decimal digits of a positive integer x: the number of digits is the smallest integer strictly bigger than log10(x). | ||
+ | *For e.g:log(5260)=3.7209 ,that is nearly(next digit) to 4. | ||
+ | *That is the number of digits of 5260(4). | ||
− | + | ==Examples== | |
+ | #log 10(5)=0.698970004 | ||
+ | #log(55)=1.740362689 | ||
+ | #log(10)=1 | ||
+ | #log(1)=0 | ||
+ | #log(-10)=NaN | ||
+ | #log(0.25)=-0.602059991 | ||
+ | ==See Also== | ||
+ | *[[Manuals/calci/LN | LN ]] | ||
+ | *[[Manuals/calci/IMLOG10 | IMLOG10 ]] | ||
+ | *[[Manuals/calci/LOG | LOG ]] | ||
− | |||
− | |||
− | |||
− | + | ==References== | |
− | + | [http://en.wikipedia.org/wiki/Exponential_function| Exponential function] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 03:57, 25 November 2013
LOG10(n)
- where 'n' is the positive real number.
Description
- This function gives the logarithm value with the base 10.
- The logarithm of x to base b is the solution y to the equation.i.e b^y=x.
- For e.g The logarithm of 1000 to base 10 is 3.because 1000=10*10*10=10^3.
- The logarithm of base 10 is called common logarithm or decimal logarithm.
- It is denoted by log 10(x) or log(x).
- log10(x) is related to the number of decimal digits of a positive integer x: the number of digits is the smallest integer strictly bigger than log10(x).
- For e.g:log(5260)=3.7209 ,that is nearly(next digit) to 4.
- That is the number of digits of 5260(4).
Examples
- log 10(5)=0.698970004
- log(55)=1.740362689
- log(10)=1
- log(1)=0
- log(-10)=NaN
- log(0.25)=-0.602059991
See Also