Difference between revisions of "Manuals/calci/IMDIV"

From ZCubes Wiki
Jump to navigation Jump to search
Line 12: Line 12:
  
 
==Examples==
 
==Examples==
#IMDIV("4+2i","3-i") =<math>\frac{4+2i}{3-i}*\frac{3+i}{3+i}</math> = <math>\frac{12+10i+2i^2}{3^2-i^2}</math> = 10+10i/10 (because <math>i^2=-1</math>) =  1+i/1 = 1+i
+
#IMDIV("4+2i","3-i") =<math>\frac{4+2i}{3-i}*\frac{3+i}{3+i}</math> = <math>\frac{12+10i+2i^2}{3^2-i^2}</math> = 10+\frac{10i}{10} (because <math>i^2=-1</math>) =  1+\frac{i}{1} = 1+i
 
#IMDIV("3-5i,2-6i")=0.9+0.2i
 
#IMDIV("3-5i,2-6i")=0.9+0.2i
 
#IMDIV("5","2+3i")=0.769-1.153i
 
#IMDIV("5","2+3i")=0.769-1.153i

Revision as of 05:49, 25 November 2013

IMDIV(z1,z2)


  • and are complex numbers.

Description

  • This function gives the division of two complex numbers.
  • This function used to remove the (imaginary unit) from the denominator.
  • are the two complex numbers in the form of and , where & are real numbers is the imaginary unit, .
  • To do the division of complex number we have follow the steps:
step 1: We have to write the complex number is in the fraction form.
step 2: To find the conjugate of the denominator.
step 3: To mutiply the numerator and denominator with conjugate.

i.e.

Examples

  1. IMDIV("4+2i","3-i") = = = 10+\frac{10i}{10} (because ) = 1+\frac{i}{1} = 1+i
  2. IMDIV("3-5i,2-6i")=0.9+0.2i
  3. IMDIV("5","2+3i")=0.769-1.153i
  4. IMDIV("1+i","2")=0.5+0.5i

See Also


References

Exponential function