Difference between revisions of "Manuals/calci/EXPONDIST"

From ZCubes Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
  1. <math>x</math> or <math>\lambda</math> is non-numeric.
 
  1. <math>x</math> or <math>\lambda</math> is non-numeric.
 
  2. <math>x<0</math> or <math>\lambda \le 0</math>
 
  2. <math>x<0</math> or <math>\lambda \le 0</math>
The probability density function of an exponential distribution is
+
The Probability Density Function of an Exponential Distribution is
 
:<math>f(x,\lambda)=\lambda e^{-\lambda x} , x \ge 0 </math>
 
:<math>f(x,\lambda)=\lambda e^{-\lambda x} , x \ge 0 </math>
 
:<math> =0  ,  x<0</math>
 
:<math> =0  ,  x<0</math>
Line 22: Line 22:
 
*where <math>\lambda</math> is the rate parameter and H(x) is the  Heaviside step function
 
*where <math>\lambda</math> is the rate parameter and H(x) is the  Heaviside step function
 
*This function is valid only on the interval [0,infinity].
 
*This function is valid only on the interval [0,infinity].
The cumulative distribution function is :
+
The Cumulative Distribution Function is :
 
<math>F(x;\lambda)=1-e^{-\lambda x},  x \ge 0</math>
 
<math>F(x;\lambda)=1-e^{-\lambda x},  x \ge 0</math>
 
:<math>0    ,  x<0 </math>
 
:<math>0    ,  x<0 </math>
Line 28: Line 28:
 
:<math>F(x,\lambda)=1-e^{-\lambda x}.H(x)</math>
 
:<math>F(x,\lambda)=1-e^{-\lambda x}.H(x)</math>
  
*The mean or expected value of the exponential distribution is: <math>E[x]=\frac{1}{ λ}</math>
+
*The mean or expected value of the Exponential Distribution is: <math>E[x]=\frac{1}{ λ}</math>
*The variance of the exponential distribution is: <math>Var[x]=\frac{1}{\lambda^2}</math>.
+
*The variance of the Exponential Distribution is: <math>Var[x]=\frac{1}{\lambda^2}</math>.

Revision as of 00:36, 29 November 2013

EXPONDIST(x,Lambda,cum)


  • is the value of the function
  • is the value of the rate parameter
  • is the logical value like TRUE or FALSE

Description

  • This function gives the exponential distribution. This distribution used to model the time until something happens in the process.
  • This describes the time between events in a Poisson process i.e, a process in which events occur continuously and independently at a constant average rate.
  • For e.g Time between successive vehicles arrivals at a workshop.
  • In EXPONDIST(x, lambda,cu), xis the value of the function, lambda is called rate parameter and cu(cumulative) is the TRUE or FALSE. *This function will give the cumulative distribution function , when cu is TRUE,otherwise it will give the probability density function , when cu is FALSE.
  • Suppose we are not giving the cu value, by default it will consider the cu value is FALSE.
  • This function will give the error result when
1.  or  is non-numeric.
2.  or 

The Probability Density Function of an Exponential Distribution is

or

Failed to parse (syntax error): {\displaystyle f(x;\lambda)= λe^{-\lambda x} .H(x)}
  • where is the rate parameter and H(x) is the Heaviside step function
  • This function is valid only on the interval [0,infinity].

The Cumulative Distribution Function is :

or

  • The mean or expected value of the Exponential Distribution is: Failed to parse (syntax error): {\displaystyle E[x]=\frac{1}{ λ}}
  • The variance of the Exponential Distribution is: .