Difference between revisions of "Manuals/calci/CHIINV"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''CHIINV'''(Probability, DegreeOfFreedom) where, '''Probability''' - probability associated with the chi-squ...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''CHIINV(prob,df)'''</div><br/>
 +
*Where 'prob' is theprobability value associated with the chisquared distribution and 'df' is the number of degrees of freedom
  
'''CHIINV'''(Probability, DegreeOfFreedom)
+
==Description==
 +
*This function gives the inverse value of one_tailed probability of the chi-squared distribution.
 +
*It is called inverted-chi-square distributionand it is  a continuous probability distribution of a positive-valued random variable.
 +
*In CHIINV(prob,df) where prob is the probability value associated with the chisquared distribution and df is the degrees of freedom.
 +
*Degrees of freedom=(r-1)(c-1).
 +
*The X^2 static used to compare the observed value in each table to the value which would be the expected  under the assumption.
 +
*If X has the chi-squared distribution with \nu degrees of freedom, then according to the first definition, 1/X has the inverse-chi-squared distribution with \nu degrees of freedom;If CHIDIST(x,df)=prob, then CHIINV(prob,df)=x.
 +
*CHIINV using the iterating method to find the value of x.suppose the iteration has not converged after 100 searches, then the function gives the error result.
 +
*This function will give the error result when 
 +
#Any one of the arguments are nonnumeric
 +
#df value is not an integer
 +
#The df <1or df>10^10
 +
#Also prob<0 or prob>1.
  
where,
+
==Examples==
  
'''Probability''' - probability associated with the chi-squared distribution.
+
#CHIINV(0.0001234098,2)=18
 +
#CHIINV(0.2547876,5)=6.56699
 +
#CHIINV(0.157299207050,1)=2
 +
#CHIINV(0.6785412,-1)=NAN
 +
==See Also==
 +
*[[Manuals/calci/CHIDIST  | CHIDIST ]]
 +
*[[Manuals/calci/CHITEST  | CHITEST]]
  
'''DegreeOfFreedom ''' - the number of degree of freedom.
+
==References==
 
+
[http://en.wikipedia.org/wiki/Bessel_function| Bessel Function]
</div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left">Returns the inverse of the one-tailed probability of the chi-squared distribution.</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
 
 
If Probability &lt; 0 or Probability &gt;1 ,CHIINV returns #ERROR.
 
 
 
If either parameters is nonnumeric, it returns NaN.
 
 
 
If DegreeOfFreedom &lt; 1 or DegreeOfFreedom &gt; = 10^10, CHIIINV returns the #ERROR.
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
CHIINV
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
 
Lets see an example in (Column1, Row3)
 
 
 
<nowiki>=CHIINV(R1C1, R2C1)</nowiki>
 
 
 
CHIINV RETURNS 15.
 
 
 
Consider an another example
 
 
 
<nowiki>=CHIINV(-1,0,2)</nowiki>
 
 
 
CHIINV returns the #ERROR.
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| class="  " | Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class=" " | 0.0058
 
|
 
|
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f " | 5
 
|
 
|
 
|
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 15
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
| class="  " |
 
| class=" SelectTD ChangeBGColor" |
 
<div id="2Space_Handle" class="zhandles" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" class="zhandles" title="Click and Drag over to AutoFill other cells."></div><div id="2Space_Drag" class="zhandles" title="Click and Drag to Move/Copy Area.">[[Image:copy-cube.gif]]  </div>
 
|
 
|
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 

Revision as of 03:42, 3 December 2013

CHIINV(prob,df)


  • Where 'prob' is theprobability value associated with the chisquared distribution and 'df' is the number of degrees of freedom

Description

  • This function gives the inverse value of one_tailed probability of the chi-squared distribution.
  • It is called inverted-chi-square distributionand it is a continuous probability distribution of a positive-valued random variable.
  • In CHIINV(prob,df) where prob is the probability value associated with the chisquared distribution and df is the degrees of freedom.
  • Degrees of freedom=(r-1)(c-1).
  • The X^2 static used to compare the observed value in each table to the value which would be the expected under the assumption.
  • If X has the chi-squared distribution with \nu degrees of freedom, then according to the first definition, 1/X has the inverse-chi-squared distribution with \nu degrees of freedom;If CHIDIST(x,df)=prob, then CHIINV(prob,df)=x.
  • CHIINV using the iterating method to find the value of x.suppose the iteration has not converged after 100 searches, then the function gives the error result.
  • This function will give the error result when
  1. Any one of the arguments are nonnumeric
  2. df value is not an integer
  3. The df <1or df>10^10
  4. Also prob<0 or prob>1.

Examples

  1. CHIINV(0.0001234098,2)=18
  2. CHIINV(0.2547876,5)=6.56699
  3. CHIINV(0.157299207050,1)=2
  4. CHIINV(0.6785412,-1)=NAN

See Also

References

Bessel Function