Difference between revisions of "Manuals/calci/BETAINV"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left">'''BETAINV'''('''prob''','''alpha''','''beta''',X,Y) '''Where Prob is a probability associated with the beta distribut...") |
|||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''BETAINV(prob,alpha,beta,a,b)'''</div><br/> |
+ | *Where prob is the probability value associated with the beta distribution. | ||
+ | *Alpha& beta are the values of the shape parameter. | ||
+ | *a&b the lower and upper limit to the interval of x. | ||
− | + | ==Description== | |
+ | *This function gives the inverse value of cumulative beta probability distribution. | ||
+ | *It is called inverted beta function or beta prime. | ||
+ | *In BETAINV(prob,alpha,beta,a,b), prob is the probability value of the associated with beta distribution, alpha and beta are the values of the two positive shape parameters and a and b are the lower and upper limit. *Normally the limit values are optional, i.e., when we are giving the values of a&b then the result value is from a and b, otherwise when we are omitting the values a and b by default it will consider a=0 and b=1, so the result value is from 0 and1. | ||
+ | *If BETADIST(x,alpha,beta,a,b)=prob, then BETAINV(prob,alpha,beta,a,b)=x. | ||
+ | *BETAINV using the iterating method to find the value of x.suppose the iteration has not converged after 100 searches, then the function gives the error result. | ||
+ | *This function will give the error result when | ||
+ | #Any one of the arguments are nonnumeric | ||
+ | #alpha or beta<=0 | ||
+ | #x<a ,x>b, or a=b | ||
+ | #we are not mentioning the limit values a and b, by default it will consider the standard cumulative beta distribution, a= 0 and b= 1. | ||
+ | ==Examples== | ||
+ | #BETAINV(0.2060381025,5,9,2,6)=3 | ||
+ | #BETAINV(0.359492343,8,10)=0.399999976(EXCEL) is approximate to 0.4=1.75(calci) | ||
+ | |||
+ | #BETAINV(0.685470581,5,8,2,6)= 3.78378773(excel)=3.75(calci) | ||
+ | |||
+ | #BETAINV(0.75267,1,7,7,9)=7.361844063(Excel)=7.25(calci) | ||
+ | |||
+ | #BETAINV(0.5689,-2,4,3,5)=NAN, because alpha<0. | ||
− | + | ==See Also== | |
+ | *[[Manuals/calci/BETADIST | BETADIST]] | ||
+ | *[[Manuals/calci/ALL | All Functions]] | ||
− | + | ==References== | |
− | + | [http://en.wikipedia.org/wiki/Beta_distribution Beta Distribution] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 00:34, 4 December 2013
BETAINV(prob,alpha,beta,a,b)
- Where prob is the probability value associated with the beta distribution.
- Alpha& beta are the values of the shape parameter.
- a&b the lower and upper limit to the interval of x.
Description
- This function gives the inverse value of cumulative beta probability distribution.
- It is called inverted beta function or beta prime.
- In BETAINV(prob,alpha,beta,a,b), prob is the probability value of the associated with beta distribution, alpha and beta are the values of the two positive shape parameters and a and b are the lower and upper limit. *Normally the limit values are optional, i.e., when we are giving the values of a&b then the result value is from a and b, otherwise when we are omitting the values a and b by default it will consider a=0 and b=1, so the result value is from 0 and1.
- If BETADIST(x,alpha,beta,a,b)=prob, then BETAINV(prob,alpha,beta,a,b)=x.
- BETAINV using the iterating method to find the value of x.suppose the iteration has not converged after 100 searches, then the function gives the error result.
- This function will give the error result when
- Any one of the arguments are nonnumeric
- alpha or beta<=0
- x<a ,x>b, or a=b
- we are not mentioning the limit values a and b, by default it will consider the standard cumulative beta distribution, a= 0 and b= 1.
Examples
- BETAINV(0.2060381025,5,9,2,6)=3
- BETAINV(0.359492343,8,10)=0.399999976(EXCEL) is approximate to 0.4=1.75(calci)
- BETAINV(0.685470581,5,8,2,6)= 3.78378773(excel)=3.75(calci)
- BETAINV(0.75267,1,7,7,9)=7.361844063(Excel)=7.25(calci)
- BETAINV(0.5689,-2,4,3,5)=NAN, because alpha<0.