Difference between revisions of "Manuals/calci/GAMMALN"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font size="3"><font face="Times New Roman">'''GAMMALN'''('''x''')</font></font> <font size="3"><font face="Times ...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''GAMMALN(x)'''</div><br/>
 +
*Where x is the number
 +
==Description==
 +
*This function gives  the natural logarithm of the absolute value of the gamma function.
 +
*The functions digamma and trigamma are the first and second derivatives of the logarithm of the gamma function.
 +
*This is often called the ‘polygamma’ function, The gamma, lgamma, digamma and trigamma functions are internal generic primitive functions.
 +
*Normally the number e to the power GAMMALN(x), where x is an integer, is same as (x-1)!. *GAMMALN=LN(GAMMA(x))=,where GAMMA(x) = integral 0 to infinity  t^{x-1} e^{-t} dt.and it is for all complex numbers except the negative integers and zero.
 +
*This function will give the result as error when x is nonnumeric and x<=0.
 +
==Examples==
 +
#GAMMALN(6)=4.787491744416229
 +
#GAMMALN(42)=114.03421178146174
 +
#GAMMALN(1)=0.00018319639111644828(calci)=-0.00000000004171(Excel) approximate to 0.
 +
#GAMMALN(-10)=NAN,because x<0
 +
==See Also==
 +
*[[Manuals/calci/GAMMADIST | GAMMADIST ]]
 +
*[[Manuals/FACT  | FACT]]
 +
*[[Manuals/calci/LN  | LN]]
  
<font size="3"><font face="Times New Roman">'''GAMMALN'''('''x''')</font></font>
+
==References==
 
+
[http://en.wikipedia.org/wiki/Gamma_distribution| Gamma Distribution]*
<font size="3"><font face="Times New Roman">Where X is to calculate GAMMALN.</font></font>
 
 
 
</div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left">
 
 
 
<font size="3"><font face="Times New Roman">It is the natural logarithm of the gamma function.</font></font>
 
 
 
</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
 
 
<font size="3">·</font>        <font size="3"><font face="Times New Roman">x should be numeric otherwise GAMMALAN returns infinity.</font></font>
 
 
 
<font size="3">·</font>        <font size="3"><font face="Times New Roman">When x is less than or equal to 0, GAMMALN returns error value. </font></font>
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">GAMMALN</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left">i.e. = BETADIST (3, 5, 9,1,6 ) is 0.647</div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
 
<font size="3"><font face="Times New Roman">Let’s see an example </font></font>
 
 
 
<font size="3">GAMMALAN (x)</font>
 
 
 
<font size="3"><font face="Times New Roman"><nowiki>=GAMMALN (5) is 3.178</nowiki></font></font>
 
 
 
</div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="  " |
 
<div id="2Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f " | 5
 
| class="sshl_f" | 3.178054
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="SelectTD" |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 

Revision as of 03:55, 4 December 2013

GAMMALN(x)


  • Where x is the number

Description

  • This function gives the natural logarithm of the absolute value of the gamma function.
  • The functions digamma and trigamma are the first and second derivatives of the logarithm of the gamma function.
  • This is often called the ‘polygamma’ function, The gamma, lgamma, digamma and trigamma functions are internal generic primitive functions.
  • Normally the number e to the power GAMMALN(x), where x is an integer, is same as (x-1)!. *GAMMALN=LN(GAMMA(x))=,where GAMMA(x) = integral 0 to infinity t^{x-1} e^{-t} dt.and it is for all complex numbers except the negative integers and zero.
  • This function will give the result as error when x is nonnumeric and x<=0.

Examples

  1. GAMMALN(6)=4.787491744416229
  2. GAMMALN(42)=114.03421178146174
  3. GAMMALN(1)=0.00018319639111644828(calci)=-0.00000000004171(Excel) approximate to 0.
  4. GAMMALN(-10)=NAN,because x<0

See Also

References

Gamma Distribution*