Difference between revisions of "Manuals/calci/CORREL"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"><font size="3"><font face="Times New Roman">  '''CORREL'''(A1,A2) Where A1 is the first cell range and A2 is a se...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"><font size="3"><font face="Times New Roman"
+
<div style="font-size:30px">'''CORREL(ar1,ar2)'''</div><br/>
 +
*<math>ar1 and ar2 </math>are the set of values.
 +
==Description==
 +
*This function gives the correlation coefficient of the 1st set(ar1) of values and 2nd set(ar2) of values.
 +
*Correlation is a statistical technique which shows the relation of strongly paired variables. 
 +
*For example ,test average and study time are related;those who spending time more to study they will get high marks and spending less time for studies their Average will goes down.
 +
*There are  different correlation techniques measuring the degree of correlation.
 +
*The most common of these is the Pearson correlation coefficient  denoted by r  xy.
 +
*The main result of a correlation is called the correlation coefficient (or "r")which  ranges from -1 to +1.
 +
*The r value is positive i.e.+1  when the two set values increase together then it is the perfect positive correlation.
 +
*The r value is negative i.e. (-1)  when one value decreases as the other increases then it is called negative correlation.
 +
*Suppose the r value is 0  then there is no correlation (the values don't seem linked at all).
 +
*If we have a series of n measurements of X and Y written as xi and yi where i = 1, 2, ..., n, then the sample *correlation coefficient is: CORREL(X,Y)= r xy=[ summation(i=1 to n)(xi-x(bar))(yi-y(bar))]/ SQRT{ summation(i=1 to n)(xi-x(bar))^2 summation(i=1 to n)(yi-y(bar))^2], where x(bar) and y(bar) are the sample means of X and Y. *This function will give the result as error when
 +
#ar1 and ar2 are nonnumeric or different number of data points.
 +
#ar1 or ar2 is empty
 +
#The denominator value is zero.
 +
*Suppose ar1 and ar2 contains any text, logical values, or empty cells, like that values are ignored.
  
'''CORREL'''(A1,A2)
+
==Examples==
  
Where A1 is the first cell range and A2 is a second cell range.
+
#=BESSELY(2,3) = -1.127783765
 +
#=BESSELY(0.7,4)= -132.6340573
 +
#=BESSELY(9,1) = 0.104314575
 +
#=BESSELY(2,-1) = NAN
  
</font></font></div>
+
==See Also==
----
+
#1. Find the correlation coefficients for X and Y values are given below :
<div id="1SpaceContent" class="zcontent" align="left">
+
X={1,2,3,4,5};  Y={11,22,34,43,56}
 +
CORREL(A4:A8,B4:B8)=0.99890610723867
 +
#The following table gives the math scores and times taken to run 100 m for 10 friends:
 +
SCORE(X)={52,25,35,90,76,40}; TIME TAKEN(Y)={11.3,12.9,11.9,10.2,11.1,12.5}
 +
CORREL(A5:A10,B5:B10)= -0.93626409417769
 +
#Find the correlation coefficients for X and Y values are given below :
 +
X={-4,11,34,87};Y={9,2,59,24}
 +
CORREL(A1:A4,B1:B4)=0.353184665607273
  
<font size="3"><font face="Times New Roman">CORREL (Correlation coefficient) is to determine the relationship between two properties</font></font>
+
==References==
 
+
[http://en.wikipedia.org/wiki/Bessel_function| Bessel Function]
</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
 
 
<font size="3">·</font>        <font size="3"><font face="Times New Roman">Cells with value zero are included, but if an array or reference argument contains text, logical values, empty cells which are ignored</font></font>
 
 
 
<font size="3">·</font>        <font size="3"><font face="Times New Roman">CORREL returns the error value when either A1 or A2 is empty.</font></font>
 
 
 
<font size="3"><font face="Times New Roman"></font></font>
 
 
 
<font size="3"><font face="Times New Roman">
 
 
 
<font size="3">·</font>        <font size="3"><font face="Times New Roman">The equation to find out the correlation coefficient is: </font></font>
 
 
 
<center><font size="3" face="Times New Roman"></font></center>
 
 
 
<font size="3"><font face="Times New Roman">where x and y are the means A1and A2.</font></font>
 
 
 
</font></font></div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">CORREL</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="  " |
 
<div id="2Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="  " | Column1
 
| class="      " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 8
 
| class="sshl_f" | 3
 
| class="sshl_f" | 0.421665
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 5
 
| class="sshl_f" | 10
 
| class="sshl_f SelectTD SelectTD" |
 
<div id="2Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 12
 
| class="sshl_f" | 15
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" | 2
 
| class="sshl_f" | 5
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" | 3
 
| class="sshl_f" | 11
 
| class="sshl_f" |
 
| 0
 
|- class="even"
 
| class="sshl_f" | Row6
 
| class="sshl_f" |
 
| class="sshl_f      " |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class="sshl_f" | Row7
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left"><font size="3"><font face="Times New Roman">''' <font size="3"><font face="Times New Roman">AVEDEV (N1, N2...)</font></font> <font size="3"><font face="Times New Roman">Where N1, N 2 ...   are positive integers.</font></font> '''</font></font></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left">
 
 
 
<font size="3"><font face="Times New Roman"> </font></font>
 
 
 
{| class="MsoNormalTable"
 
| valign="top" |
 
<font size="3"><font face="Times New Roman"><nowiki>=CORREL (B2:B6, C2:C6) is 0.4217</nowiki></font></font>
 
| valign="top" |
 
<font size="3"><font face="Times New Roman"></font></font>
 
|-
 
| valign="top" |
 
<font size="3"><font face="Times New Roman"></font></font>
 
| valign="top" |
 
<font size="3"><font face="Times New Roman"></font></font>
 
|}
 
 
 
</div>
 
----
 

Revision as of 06:08, 9 December 2013

CORREL(ar1,ar2)


  • are the set of values.

Description

  • This function gives the correlation coefficient of the 1st set(ar1) of values and 2nd set(ar2) of values.
  • Correlation is a statistical technique which shows the relation of strongly paired variables.
  • For example ,test average and study time are related;those who spending time more to study they will get high marks and spending less time for studies their Average will goes down.
  • There are different correlation techniques measuring the degree of correlation.
  • The most common of these is the Pearson correlation coefficient denoted by r xy.
  • The main result of a correlation is called the correlation coefficient (or "r")which ranges from -1 to +1.
  • The r value is positive i.e.+1 when the two set values increase together then it is the perfect positive correlation.
  • The r value is negative i.e. (-1) when one value decreases as the other increases then it is called negative correlation.
  • Suppose the r value is 0 then there is no correlation (the values don't seem linked at all).
  • If we have a series of n measurements of X and Y written as xi and yi where i = 1, 2, ..., n, then the sample *correlation coefficient is: CORREL(X,Y)= r xy=[ summation(i=1 to n)(xi-x(bar))(yi-y(bar))]/ SQRT{ summation(i=1 to n)(xi-x(bar))^2 summation(i=1 to n)(yi-y(bar))^2], where x(bar) and y(bar) are the sample means of X and Y. *This function will give the result as error when
  1. ar1 and ar2 are nonnumeric or different number of data points.
  2. ar1 or ar2 is empty
  3. The denominator value is zero.
  • Suppose ar1 and ar2 contains any text, logical values, or empty cells, like that values are ignored.

Examples

  1. =BESSELY(2,3) = -1.127783765
  2. =BESSELY(0.7,4)= -132.6340573
  3. =BESSELY(9,1) = 0.104314575
  4. =BESSELY(2,-1) = NAN

See Also

  1. 1. Find the correlation coefficients for X and Y values are given below :

X={1,2,3,4,5}; Y={11,22,34,43,56} CORREL(A4:A8,B4:B8)=0.99890610723867

  1. The following table gives the math scores and times taken to run 100 m for 10 friends:

SCORE(X)={52,25,35,90,76,40}; TIME TAKEN(Y)={11.3,12.9,11.9,10.2,11.1,12.5} CORREL(A5:A10,B5:B10)= -0.93626409417769

  1. Find the correlation coefficients for X and Y values are given below :
X={-4,11,34,87};Y={9,2,59,24}

CORREL(A1:A4,B1:B4)=0.353184665607273

References

Bessel Function