Difference between revisions of "Manuals/calci/FISHER"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''FISHER'''('''n''') '''n''' is a numeric value for which the transformation is done. </div> ---- <div...") |
|||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''FISHER(x)'''</div><br/> |
+ | *<math>x</math> is the number. | ||
+ | ==Description== | ||
+ | *This function gives the value of Fisher transformation at x. | ||
+ | *Fisher transformation is used to test the hypothesis of two correlations. | ||
+ | *It is mainly associated with the Pearson product-moment correlation coefficient for bivariate normal observations. | ||
+ | *In FISHER(X), x is the number which ranges between -1 to +1. | ||
+ | *The transformaton is defined by : z=1/2 ln(1+x/1-x)= arctanh(x), where "ln" is the natural logarithm function and "arctanh" is the inverse hyperbolic function. | ||
+ | *This function will give the result as error when: | ||
+ | #x is nonnumeric | ||
+ | #x<=-1 or x>=1 . | ||
− | + | ==Examples== | |
− | + | #FISHER(0.5642)=0.6389731838284958 | |
+ | #FISHER(0)=0 | ||
+ | #FISHER(-0.3278)=-0.3403614004970268 | ||
+ | #FISHER(1)=Infinity | ||
+ | #FISHER(-1)=Infinity | ||
− | + | ==See Also== | |
− | + | *[[Manuals/calci/CORREL | CORREL ]] | |
− | + | *[[Manuals/calci/FISHERINV | FISHERINV ]] | |
− | |||
− | + | ==References== | |
− | + | [http://en.wikipedia.org/wiki/Bessel_function| Bessel Function] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 06:22, 9 December 2013
FISHER(x)
- is the number.
Description
- This function gives the value of Fisher transformation at x.
- Fisher transformation is used to test the hypothesis of two correlations.
- It is mainly associated with the Pearson product-moment correlation coefficient for bivariate normal observations.
- In FISHER(X), x is the number which ranges between -1 to +1.
- The transformaton is defined by : z=1/2 ln(1+x/1-x)= arctanh(x), where "ln" is the natural logarithm function and "arctanh" is the inverse hyperbolic function.
- This function will give the result as error when:
- x is nonnumeric
- x<=-1 or x>=1 .
Examples
- FISHER(0.5642)=0.6389731838284958
- FISHER(0)=0
- FISHER(-0.3278)=-0.3403614004970268
- FISHER(1)=Infinity
- FISHER(-1)=Infinity
See Also