Difference between revisions of "Manuals/calci/FISHERINV"

From ZCubes Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
==Description==
 
==Description==
 
*This function gives the inverse of the Fisher transformation.
 
*This function gives the inverse of the Fisher transformation.
*We can use when the testing of correlations between set of data.
+
*We use this to test the correlations between set of data.
*The Inverse of the Fisher transformation is: <math>x= (e^2y-1)/(e^2y+1) i.e.,y=FISHER(x</math>), then FISHERINV(y)=x.  
+
*The Inverse of the Fisher transformation is: <math>x= \frac {e^{2y-1}}{e^{2y+1}} i.e.,y=FISHER(x</math>), then FISHERINV(y)=x.  
 
*It can be used to construct a confidence interval.  
 
*It can be used to construct a confidence interval.  
 
A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.  
 
A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.  

Revision as of 00:16, 10 December 2013

FISHERINV(y)


  • is the number.

Description

  • This function gives the inverse of the Fisher transformation.
  • We use this to test the correlations between set of data.
  • The Inverse of the Fisher transformation is: ), then FISHERINV(y)=x.
  • It can be used to construct a confidence interval.

A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.

  • This function will give the result as error when the y value is nonnumric.

Examples

  1. FISHERINV(0.6389731838)=0.56419999998
  2. FISHERINV(0)=0
  3. FISHERINV(0.1234)=0.1227774315035342
  4. FISHERINV(1)=0.761594155955765
  5. FISHERINV(-0.4296)=-0.4049869686465480

See Also


References

Bessel Function