Difference between revisions of "Manuals/calci/FISHERINV"

From ZCubes Wiki
Jump to navigation Jump to search
Line 4: Line 4:
 
*This function gives the inverse of the Fisher transformation.
 
*This function gives the inverse of the Fisher transformation.
 
*We use this to test the correlations between set of data.
 
*We use this to test the correlations between set of data.
*The Inverse of the Fisher transformation is: <math>x= \frac {e^{2y-1}}{e^{2y+1}} i.e.,y=FISHER(x</math>), then FISHERINV(y)=x.
+
*The Inverse of the Fisher transformation is: <math>x= \frac {e^{2y-1}}{e^{2y+1}}</math> i.e <math>y=FISHER(x)</math>, then <math>FISHERINV(y)=x</math>
 
*It can be used to construct a confidence interval.  
 
*It can be used to construct a confidence interval.  
A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.  
+
*A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.  
*This function will give the result as error when the y value is nonnumric.
+
This function will give the result as error when the <math>y</math> value is non-numeric.
  
 
==Examples==
 
==Examples==

Revision as of 00:18, 10 December 2013

FISHERINV(y)


  • is the number.

Description

  • This function gives the inverse of the Fisher transformation.
  • We use this to test the correlations between set of data.
  • The Inverse of the Fisher transformation is: i.e , then
  • It can be used to construct a confidence interval.
  • A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.
This function will give the result as error when the  value is non-numeric.

Examples

  1. FISHERINV(0.6389731838)=0.56419999998
  2. FISHERINV(0)=0
  3. FISHERINV(0.1234)=0.1227774315035342
  4. FISHERINV(1)=0.761594155955765
  5. FISHERINV(-0.4296)=-0.4049869686465480

See Also


References

Bessel Function