Difference between revisions of "Manuals/calci/FISHERINV"
Jump to navigation
Jump to search
Line 4: | Line 4: | ||
*This function gives the inverse of the Fisher transformation. | *This function gives the inverse of the Fisher transformation. | ||
*We use this to test the correlations between set of data. | *We use this to test the correlations between set of data. | ||
− | *The Inverse of the Fisher transformation is: <math>x= \frac {e^{2y-1}}{e^{2y+1}} i.e | + | *The Inverse of the Fisher transformation is: <math>x= \frac {e^{2y-1}}{e^{2y+1}}</math> i.e <math>y=FISHER(x)</math>, then <math>FISHERINV(y)=x</math> |
*It can be used to construct a confidence interval. | *It can be used to construct a confidence interval. | ||
− | A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate. | + | *A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate. |
− | + | This function will give the result as error when the <math>y</math> value is non-numeric. | |
==Examples== | ==Examples== |
Revision as of 00:18, 10 December 2013
FISHERINV(y)
- is the number.
Description
- This function gives the inverse of the Fisher transformation.
- We use this to test the correlations between set of data.
- The Inverse of the Fisher transformation is: i.e , then
- It can be used to construct a confidence interval.
- A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.
This function will give the result as error when the value is non-numeric.
Examples
- FISHERINV(0.6389731838)=0.56419999998
- FISHERINV(0)=0
- FISHERINV(0.1234)=0.1227774315035342
- FISHERINV(1)=0.761594155955765
- FISHERINV(-0.4296)=-0.4049869686465480
See Also