Difference between revisions of "Manuals/calci/LN"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...")
 
Line 1: Line 1:
<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
<div style="font-size:30px">'''LN(n)'''</div><br/>
 +
*where n is the positive real number.
  
Syntax
+
==Description==
 +
*This function gives the natural logarithm of a number.
 +
*LN is the  logarithm in which the base is the irrational number e (= 2.71828 . . . ).
 +
*For example, ln 10 = loge10 = approximately 2.30258.
 +
*Also called Napierian logarithm.
 +
*The constant e is called Euler's number.
 +
*The natural logarithm is denoted by ln(x) or log e(x).
 +
*where x is the Positive real number.
 +
*The ln(x) is the inverse function of the exponential function e^ln(x)=x if x>0.
 +
ln(e^x)=x
  
</div></div>
+
==Examples==
----
+
*=LN(15) = 2.708050201
<div id="4SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
*=LN(8.3) = 2.116255515
 +
*=LN(1) = 0
 +
*=LN(0) = INFINITY
 +
*=LN(-20) = NAN
 +
*=LN(exp(5)) = 5
 +
*=EXP(LN(7)) = 7
  
Remarks
+
==See Also==
 +
*[[Manuals/calci/LOG | LOG]]
 +
*[[Manuals/calci/EXP | EXP]]
 +
*[[Manuals/calci/IML  | IML]]
  
</div></div>
+
==References==
----
+
[http://en.wikipedia.org/wiki/Natural_logarithm Natural Logarithm]
<div id="2SpaceContent" align="left"><div class="ZEditBox" align="justify">
 
 
 
Examples
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" align="left"><div class="ZEditBox" align="justify">'''<font face="Times New Roman">''''''''''''<font size="6"> </font>''' '''''''''</font>'''</div></div>
 
----
 
<div id="11SpaceContent" align="left"><div class="ZEditBox mceEditable" align="justify">
 
 
 
<font size="5">Description</font>
 
 
 
</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">'''<font face="Times New Roman"> <font size="6">LN</font> </font>'''</div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><br /><div id="7Space" class="gamizbox" title="7Space"><div id="7SpaceHeader" class="zheaderstyle" title="Double-click to start and stop editing the header."><center></center></div><div id="7SpaceRollup" title="Double-click to rolldown" align="left"><span><span id="7SpaceRollupContent" align="center"></span></span></div><div id="7SpaceCover"><div id="7SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">
 
 
 
'''LN'''('''n1''')… where n1 is the positive real number
 
 
 
</div></div>
 
----
 
<div id="13SpaceContent" class="zcontent" align="left"><br /><br /><div id="1Space" class="gamizbox" title="1Space"><div id="1SpaceHeader" class="zheaderstyle" title="Double-click to start and stop editing the header."><center></center></div><div id="1SpaceRollup" title="Double-click to rolldown" align="left"><span><span id="1SpaceRollupContent" align="center"></span></span></div><div id="1SpaceCover"><div id="1SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"><font size="3"> 
 
 
 
<font face="Times New Roman">LN is the inverse of the EXP function.</font>
 
 
 
<font face="Times New Roman"> </font>
 
 
 
</font></div></div>
 
----
 
<div id="14SpaceContent" class="zcontent" align="left"><br /><br /><br /><div id="5Space" class="gamizbox" title="5Space"><div id="5SpaceHeader" class="zheaderstyle" title="Double-click to start and stop editing the header."><center></center></div><div id="5SpaceRollup" title="Double-click to rolldown" align="left"><span><span id="5SpaceRollupContent" align="center"></span></span></div><div id="5SpaceCover"><div id="5SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">
 
 
 
LN function gives you the natural logarithm of a number.
 
 
 
</div></div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><br /><br /><br /><div id="9Space" class="gamizbox" title="9Space"><div id="9SpaceHeader" class="zheaderstyle" title="Double-click to start and stop editing the header."><center></center></div><div id="9SpaceRollup" title="Double-click to rolldown" align="left"><span><span id="9SpaceRollupContent" align="center"></span></span></div><div id="9SpaceCover"><div id="9SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"><font size="3"><font face="Times New Roman"> 
 
 
 
Lets see an example in (Column1, Row 1)
 
 
 
LN (n1)
 
 
 
LN (C1R1)''''''
 
 
 
That is LN (35) is 3.56
 
 
 
</font></font></div></div>
 
----
 
<div id="6SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="  " |
 
<div id="6Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| Column1
 
| class=" " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 35
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 3.5553
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_fSelectTD SelectTD " |
 
<div id="6Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="6Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
</div></div></div></div></div></div></div></div></div></div></div></div>
 

Revision as of 22:48, 15 December 2013

LN(n)


  • where n is the positive real number.

Description

  • This function gives the natural logarithm of a number.
  • LN is the logarithm in which the base is the irrational number e (= 2.71828 . . . ).
  • For example, ln 10 = loge10 = approximately 2.30258.
  • Also called Napierian logarithm.
  • The constant e is called Euler's number.
  • The natural logarithm is denoted by ln(x) or log e(x).
  • where x is the Positive real number.
  • The ln(x) is the inverse function of the exponential function e^ln(x)=x if x>0.

ln(e^x)=x

Examples

  • =LN(15) = 2.708050201
  • =LN(8.3) = 2.116255515
  • =LN(1) = 0
  • =LN(0) = INFINITY
  • =LN(-20) = NAN
  • =LN(exp(5)) = 5
  • =EXP(LN(7)) = 7

See Also

References

Natural Logarithm