Difference between revisions of "Manuals/calci/LN"
Jump to navigation
Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...") |
|||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''LN(n)'''</div><br/> |
+ | *where n is the positive real number. | ||
− | + | ==Description== | |
+ | *This function gives the natural logarithm of a number. | ||
+ | *LN is the logarithm in which the base is the irrational number e (= 2.71828 . . . ). | ||
+ | *For example, ln 10 = loge10 = approximately 2.30258. | ||
+ | *Also called Napierian logarithm. | ||
+ | *The constant e is called Euler's number. | ||
+ | *The natural logarithm is denoted by ln(x) or log e(x). | ||
+ | *where x is the Positive real number. | ||
+ | *The ln(x) is the inverse function of the exponential function e^ln(x)=x if x>0. | ||
+ | ln(e^x)=x | ||
− | + | ==Examples== | |
− | - | + | *=LN(15) = 2.708050201 |
− | + | *=LN(8.3) = 2.116255515 | |
+ | *=LN(1) = 0 | ||
+ | *=LN(0) = INFINITY | ||
+ | *=LN(-20) = NAN | ||
+ | *=LN(exp(5)) = 5 | ||
+ | *=EXP(LN(7)) = 7 | ||
− | + | ==See Also== | |
+ | *[[Manuals/calci/LOG | LOG]] | ||
+ | *[[Manuals/calci/EXP | EXP]] | ||
+ | *[[Manuals/calci/IML | IML]] | ||
− | + | ==References== | |
− | + | [http://en.wikipedia.org/wiki/Natural_logarithm Natural Logarithm] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 22:48, 15 December 2013
LN(n)
- where n is the positive real number.
Description
- This function gives the natural logarithm of a number.
- LN is the logarithm in which the base is the irrational number e (= 2.71828 . . . ).
- For example, ln 10 = loge10 = approximately 2.30258.
- Also called Napierian logarithm.
- The constant e is called Euler's number.
- The natural logarithm is denoted by ln(x) or log e(x).
- where x is the Positive real number.
- The ln(x) is the inverse function of the exponential function e^ln(x)=x if x>0.
ln(e^x)=x
Examples
- =LN(15) = 2.708050201
- =LN(8.3) = 2.116255515
- =LN(1) = 0
- =LN(0) = INFINITY
- =LN(-20) = NAN
- =LN(exp(5)) = 5
- =EXP(LN(7)) = 7