Difference between revisions of "Manuals/calci/IMARGUMENT"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#000000"><font face="Arial, sans-serif"><font size="2">'''IMARGUMENT'''</font></font><font face="Arial, sa...") |
|||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''IMARGUMENT(z)'''</div><br/> |
+ | *<math>z</math> is the complex number is of the form <math>x+iy</math> | ||
+ | *<math>n</math> is the order of the Bessel function and is an integer | ||
+ | ==Description== | ||
+ | *This function gives the principal value of the argument of the complex-valued expression z. i.e ., | ||
+ | *The angle from the positive axis to the line segment is called the argument of a complex number. | ||
+ | *In this function angle value is in radians. | ||
+ | *Here IMARGUMENT(z), Where z is the complex number in the form of "x+iy".i.e. x&y are the real numbers. | ||
+ | *'I' imaginary unit .i=sqrt(-1). | ||
+ | *An argument of the complex number z = x + iy is any real quantity φ such that z = x + i y = r cosφ + i r sinφ for some positive real number r. | ||
+ | *Where r=|z|=sqrt(x^2+y^2) and φ∈(is belongs to) (-Pi(),Pi()]. | ||
+ | *The argument of a complex number is calculated by arg(z)= tan^-1(y/x) =theta in radians. | ||
+ | *To change the radian value in to degree we can use DEGREES function or we can multiply the answer with 180/pi(). | ||
+ | *We can use COMPLEX function to convert real and imaginary number in to a complex number. | ||
− | + | ==Examples== | |
− | + | #IMARGUMENT("3-2i")=-0.588002604 | |
− | + | #IMARGUMENT("5+6i")=0.876058051 | |
− | + | #IMARGUMENT("2")=0 | |
+ | #IMARGUMENT("4i")=1.570796327 | ||
+ | #DEGREES(IMARGUMENT("2+2i"))=45 | ||
− | |||
− | |||
− | + | ==References== | |
− | + | [http://en.wikipedia.org/wiki/Bessel_function Bessel Function] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 22:56, 15 December 2013
IMARGUMENT(z)
- is the complex number is of the form
- is the order of the Bessel function and is an integer
Description
- This function gives the principal value of the argument of the complex-valued expression z. i.e .,
- The angle from the positive axis to the line segment is called the argument of a complex number.
- In this function angle value is in radians.
- Here IMARGUMENT(z), Where z is the complex number in the form of "x+iy".i.e. x&y are the real numbers.
- 'I' imaginary unit .i=sqrt(-1).
- An argument of the complex number z = x + iy is any real quantity φ such that z = x + i y = r cosφ + i r sinφ for some positive real number r.
- Where r=|z|=sqrt(x^2+y^2) and φ∈(is belongs to) (-Pi(),Pi()].
- The argument of a complex number is calculated by arg(z)= tan^-1(y/x) =theta in radians.
- To change the radian value in to degree we can use DEGREES function or we can multiply the answer with 180/pi().
- We can use COMPLEX function to convert real and imaginary number in to a complex number.
Examples
- IMARGUMENT("3-2i")=-0.588002604
- IMARGUMENT("5+6i")=0.876058051
- IMARGUMENT("2")=0
- IMARGUMENT("4i")=1.570796327
- DEGREES(IMARGUMENT("2+2i"))=45