Difference between revisions of "Manuals/calci/IMARGUMENT"

From ZCubes Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
*<math>n</math> is the order of the Bessel function and is an integer
 
*<math>n</math> is the order of the Bessel function and is an integer
 
==Description==
 
==Description==
*This function gives  the principal value of the argument of the complex-valued expression z. i.e ., 
+
*This function gives  the principal value of the argument of the complex-valued expression <math>z</math>.  
*The angle from the positive axis to the line segment is called the argument of a complex number.
+
* i.e The angle from the positive axis to the line segment is called the Argument of a complex number.
*In this function angle value is in radians.
+
*In this function angle value is in Radians.
*Here IMARGUMENT(z), Where z is the complex number in the form of "x+iy".i.e. x&y are the real numbers.
+
*Here IMARGUMENT(z), Where <math>z</math> is the complex number in the form of <math>x+iy</math>. i.e <math>x</math> & <math>y</math> are the real numbers.
*'I' imaginary unit .i=sqrt(-1).
+
*<math>I</math> imaginary unit .<math>i=\sqrt(-1)</math>.
*An argument of the complex number z = x + iy is any real quantity φ such that z = x + i y = r cosφ + i r sinφ for some positive real number r.  
+
*An argument of the complex number <math>z = x + iy</math> is any real quantity <math>\psi</math> such that <math>z = x + i y</math> = <math>r cosφ + i r sinφ</math> for some positive real number <math>r</math>.  
*Where r=|z|=sqrt(x^2+y^2) and φ∈(is belongs to) (-Pi(),Pi()].  
+
*Where <math>r = |z| = \sqrt{x^2+y^2}</math> and <math>\psi \in [(-\Pi(),\Pi()]<math>.  
*The argument of a complex number is calculated by arg(z)= tan^-1(y/x) =theta in radians.
+
*The argument of a complex number is calculated by <math>arg(z)= tan^{-1}(\frac{y}{x}) =\theta<math> in Radians.
*To change the radian value in to degree we can use DEGREES function or we can multiply the answer with 180/pi().
+
*To change the Radian value to Degree we can use DEGREES function or we can multiply the answer with <math>\frac{180}{\pi}</math>.
*We can use COMPLEX function to convert   real and imaginary number in to a complex number.  
+
*We can use COMPLEX function to convert real and imaginary number in to a complex number.  
  
 
==Examples==
 
==Examples==
  
#IMARGUMENT("3-2i")=-0.588002604
+
#IMARGUMENT("3-2i") = -0.588002604
#IMARGUMENT("5+6i")=0.876058051
+
#IMARGUMENT("5+6i") = 0.876058051
#IMARGUMENT("2")=0
+
#IMARGUMENT("2") = 0
#IMARGUMENT("4i")=1.570796327
+
#IMARGUMENT("4i") = 1.570796327
#DEGREES(IMARGUMENT("2+2i"))=45
+
#DEGREES(IMARGUMENT("2+2i")) = 45
 
 
 
 
  
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Bessel_function  Bessel Function]
 
[http://en.wikipedia.org/wiki/Bessel_function  Bessel Function]

Revision as of 00:51, 16 December 2013

IMARGUMENT(z)


  • is the complex number is of the form
  • is the order of the Bessel function and is an integer

Description

  • This function gives the principal value of the argument of the complex-valued expression .
  • i.e The angle from the positive axis to the line segment is called the Argument of a complex number.
  • In this function angle value is in Radians.
  • Here IMARGUMENT(z), Where is the complex number in the form of . i.e & are the real numbers.
  • imaginary unit ..
  • An argument of the complex number is any real quantity such that = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r cosφ + i r sinφ} for some positive real number .
  • Where and .
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

Examples

  1. IMARGUMENT("3-2i") = -0.588002604
  2. IMARGUMENT("5+6i") = 0.876058051
  3. IMARGUMENT("2") = 0
  4. IMARGUMENT("4i") = 1.570796327
  5. DEGREES(IMARGUMENT("2+2i")) = 45

References

Bessel Function